RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2020, том 32, выпуск 2, страницы 1–20 (Mi aa1689)

On the invariance of Welschinger invariants
E. Brugallé

Список литературы

1. Arroyo A., Brugallé E., López de Medrano L., “Recursive formula for {W}elschinger invariants”, Int. Math. Res. Not. IMRN, 5 (2011), 1107–1134  zmath
2. Block F., Göttsche L., “Refined curve counting with tropical geometry”, Compos. Math., 152:1 (2016), 115–151  crossref  mathscinet  zmath  elib
3. Block F., Gathmann A., Markwig H., “Psi-floor diagrams and a Caporaso–Harris type recursion”, Israel J. Math., 191:1 (2012), 405–449  crossref  mathscinet  zmath  elib
4. E. Brugallé, Itenberg I., Mikhalkin G., Shaw K., “Brief introduction to tropical geometry”, Proc. of the {G}ökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2015), 2014, 1–75
5. Brugallé E., Mikhalkin G., “Floor decompositions of tropical curves: the planar case”, Proc. of $15$th Gökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2009), 2008, 64–90  mathscinet
6. Brugallé E., Markwig H., “Deformation and tropical {H}irzebruch surfaces and enumerative geometry”, J. Algebraic Geom., 25:4 (2016), 633–702  crossref  mathscinet  zmath
7. Bousseau P., Tropical refined curve counting from higher genera and lambda classes, 2017, arXiv: 1706.0776  mathscinet
8. Bousseau P., Refined floor diagrams from higher genera and lambda classes, 2019, arXiv: 1904.10311  mathscinet  zmath
9. Brugallé E., Puignau N., “Behavior of Welschinger invariants under Morse simplifications”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 147–153  crossref  mathscinet  zmath
10. Brugallé E., Puignau N., “On Welschinger invariants of symplectic $4$-manifolds”, Comment. Math. Helv., 90:4 (2015), 905–938  crossref  mathscinet  zmath  elib
11. E. Brugallé, “Floor diagrams relative to a conic, and GW–W invariants of Del Pezzo surfaces”, Adv. Math., 279 (2015), 438–500  crossref  mathscinet  zmath
12. Brugallé E., “Surgery of real symplectic fourfolds and welschinger invariants”, J. Singularities, 17 (2018), 267–294  mathscinet  zmath
13. Blechman L., Shustin E., “Refined descendant invariants of toric surfaces”, Discrete Comput. Geom., 62:1 (2019), 180–208  crossref  mathscinet  zmath
14. Chen X., Solomon's relations for Welshinger's invariants: Examples, 2018, arXiv: 1809.08938
15. Ding Y., Hu J., “Welschinger invariants of blow-ups of symplectic $4$-manifolds”, Rocky Mountain J. Math., 48:4 (2018), 1105–1144  crossref  mathscinet  zmath
16. Дегтярев А. И., Харламов В. М., “Топологические свойства вещественных алгебраических многообразий: du côté de chez Rokhlin”, Успехи мат. наук, 55:4 (2000), 129–212  mathnet  crossref  mathscinet  zmath
17. Degtyarev A., Kharlamov V., “Real rational surfaces are quasi-simple”, J. Reine Angew. Math., 551 (2002), 87–99  mathscinet  zmath
18. Georgieva P., “Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution”, Adv. Math., 301 (2016), 116–160  crossref  mathscinet  zmath
19. Göttsche L., Shende V., “Refined curve counting on complex surfaces”, Geom. Topol., 18:4 (2014), 2245–2307  crossref  mathscinet
20. Göttsche L., Schroeter F., “Refined broccoli invariants”, J. Algebraic Geom., 28:1 (2019), 1–41  crossref  mathscinet
21. Georgieva P., Zinger A., “Real Gromov–Witten theory in all genera and real enumerative geometry: construction”, Ann. of Math. (2), 188:3 (2018), 685–752  crossref  mathscinet  zmath
22. Horev A., Solomon J., The open Gromov–Witten–Welschinger theory of blowups of the projective plane, 2012, arXiv: 1210.4034
23. Итенберг И. В., Харламов В. М., Шустин Е. И., “Логарифмическая эквивалентность инвариантов Вельшенже и Громова-Виттена”, Успехи мат. наук, 59:6 (2004), 85–110  mathnet  crossref  mathscinet  zmath
24. Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del Pezzo surfaces of degree $\geq3$”, Math. Ann., 355:3 (2013), 849–878  crossref  mathscinet  zmath
25. Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del {P}ezzo surfaces of degree $\geq 2$”, Internat. J. Math., 26:8 (2015), 1550060  crossref  mathscinet  zmath
26. Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants revisited”, Analysis meets geometry, Trends Math., Birkhäuser/Springer, Cham, 2017, 239–260  crossref  mathscinet  zmath  elib
27. Itenberg I., Mikhalkin G., “On Block–Göttsche multiplicities for planar tropical curves”, Int. Math. Res. Not. IMRN, 23 (2013), 5289–5320  crossref  mathscinet  zmath
28. Ionel E.-N., Parker T. H., “The symplectic sum formula for Gromov–Witten invariants”, Ann. of Math. (2), 159:3 (2004), 935–1025  crossref  mathscinet  zmath
29. Li J., “A degeneration formula of GW-invariants”, J. Differential Geom., 60:2 (2002), 199–293  crossref  mathscinet  zmath
30. Li J., “Lecture notes on relative GW-invariants”, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 41–96  mathscinet  zmath  adsnasa
31. Li A., Ruan Y., “Symplectic surgery and Gromov–Witten invariants of Calabi-Yau $3$-folds”, Invent. Math., 145:1 (2001), 151–218  crossref  mathscinet  zmath  adsnasa
32. Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377  crossref  mathscinet  zmath  elib
33. Mikhalkin G., “Quantum indices and refined enumeration of real plane curves”, Acta Math., 219:1 (2017), 135–180  crossref  mathscinet  zmath
34. Nicaise J., Payne S., Schroeter F., “Tropical refined curve counting via motivic integration”, Geom. Topol., 22:6 (2018), 3175–3234  crossref  mathscinet  zmath
35. Shustin E., “On higher genus Welschinger invariants of del pezzo surfaces”, Intern. Math. Res. Not. IMRN, 16 (2015), 6907–6940  crossref  mathscinet  zmath
36. Tehrani M. F., Zinger A., On symplectic sum formulas in Gromov–Witten theory, 2014, arXiv: 1404.1898  mathscinet
37. Welschinger J. Y., “Invariants of real symplectic $4$-manifolds and lower bounds in real enumerative geometry”, Invent. Math., 162:1 (2005), 195–234  crossref  mathscinet  zmath  adsnasa  elib
38. Welschinger J. Y., Optimalité, congruences et calculs d'invariants des variétés symplectiques réelles de dimension quatre, 2007, arXiv: 0707.4317
39. Welschinger J. Y., “Open Gromov–Witten invariants in dimension four”, J. Symplectic Geom., 13:4 (2015), 1075–1100  crossref  mathscinet  zmath  elib


© МИАН, 2025