RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 175–192 (Mi aa1814)

Power dilation systems $\{f(z^k)\}_{k\in\mathbb{N}}$ in Dirichlet-type spaces
H. Dan, K. Guo

Список литературы

1. Aleman A., Olsen J.-F., Saksman E., “Fourier multipliers for Hardy spaces of Dirichlet series”, Int. Math. Res. Not. IMRN, 2014, no. 16, 4368–4378  crossref  mathscinet  zmath
2. Beurling A., “The collected works of Arne Beurling”, Harmonic Analysis, Contemp. Math., 2, Birkhaüser, Boston, MA, 1989, 378–380  mathscinet
3. Bishop C. J., “An indestructible Blaschke product in the little Bloch space”, Publ. Mat., 37 (1993), 95–109  crossref  mathscinet  zmath
4. Bishop C. J., “Orthogonal functions in $H^\infty$”, Pacific J. Math., 220 (2005), 1–31  crossref  mathscinet  zmath
5. Bourgin D. G., Mendel C. W., “Orthonormal sets of periodic functions of the type $race f(nx) \rbrace$”, Trans. Amer. Math. Soc., 57 (1945), 332–363  mathscinet  zmath
6. Bohr H., “$\ddot{U}$ber die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien $\sum a_n/n^s$”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., A9 (1913), 441–488  zmath
7. Bourdon P. S., “Rudin's orthogonality problem and the Nevanlinna counting function”, Proc. Amer. Math. Soc., 125:4 (1997), 1187–1192  crossref  mathscinet  zmath
8. Bourgin D. G., “On certain sequences of functions”, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 1–5  crossref  mathscinet  zmath  adsnasa
9. Bourgin D. G., “A class of sequences of functions”, Trans. Amer. Math. Soc., 60 (1946), 478–518  crossref  mathscinet  zmath
10. Chacón G. A., Chacón G. R., Giménez J., “Composition operators on the Dirichlet space and related problems”, Bol. Asoc. Mat. Venez., 13:2 (2006), 155–164  mathscinet  zmath
11. Cole B., Gamelin T., “Representing measures and Hardy spaces for the infinite polydisk algebra”, Proc. Lond. Math. Soc. (3), 53 (1986), 112–142  crossref  mathscinet  zmath
12. Christensen O., An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd ed., Birkhäuser/Springer, Cham, 2016  crossref  mathscinet  zmath
13. Dan H., Guo K., “The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisk”, J. Lond. Math. Soc. (2), 103 (2021), 1–34  crossref  mathscinet  zmath
14. Dan H., Guo K., The solutions to the Wintner–Beurling problem in the class of step functions, arXiv: 2005.09779
15. Guo K., Zheng D., “Rudin orthogonality problem on the Bergman space”, J. Funct. Anal., 261 (2011), 51–68  crossref  mathscinet  zmath
16. Heil C., A Basis theory primer, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2011  mathscinet  zmath
17. Hedenmalm H., Lindqvist P., Seip K., “A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86 (1997), 1–37  crossref  mathscinet  zmath
18. Nikolski N., “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc”, Ann. Inst. Fourier (Grenoble), 62:5 (2012), 1601–1625  crossref  mathscinet
19. Nikolski N., “Binomials whose dilations generate $H^2(\mathbb{D})$”, Алгебра и анализ, 29:6 (2017), 159–177  mathnet  mathscinet
20. Olofsson A., “On the shift semigroup on the Hardy space of Dirichlet series”, Acta Math. Hungar., 128:3 (2010), 265–286  crossref  mathscinet  zmath  elib
21. Schmüdgen K., The moment problem, Grad. Texts in Math., 277, Springer, Cham, 2017  crossref  mathscinet  zmath
22. Seip K., Hardy spaces of Dirichlet series and the Riemann zeta function, Nonlinear Funct. Anal., Valencia, 2017
23. Saksman E., Seip K., “Some open questions in analysis for Dirichlet series”, Recent progress on operator theory and approximation in spaces of analytic functions, Contemp. Math., 679, Amer. Math. Soc., Providence, RI, 2016, 179–191  crossref  mathscinet  zmath
24. Sundberg C., “Measures induced by analytic functions and a problem of Walter Rudin”, J. Amer. Math. Soc., 16 (2003), 69–90  crossref  mathscinet  zmath
25. Wintner A., “Diophantine approximations and Hilbert's space”, Amer. J. Math., 66 (1944), 564–578  crossref  mathscinet  zmath


© МИАН, 2025