|
|
|
Список литературы
|
|
|
1. |
Aleman A., Olsen J.-F., Saksman E., “Fourier multipliers for Hardy spaces of Dirichlet series”, Int. Math. Res. Not. IMRN, 2014, no. 16, 4368–4378 |
2. |
Beurling A., “The collected works of Arne Beurling”, Harmonic Analysis, Contemp. Math., 2, Birkhaüser, Boston, MA, 1989, 378–380 |
3. |
Bishop C. J., “An indestructible Blaschke product in the little Bloch space”, Publ. Mat., 37 (1993), 95–109 |
4. |
Bishop C. J., “Orthogonal functions in $H^\infty$”, Pacific J. Math., 220 (2005), 1–31 |
5. |
Bourgin D. G., Mendel C. W., “Orthonormal sets of periodic functions of the type $race f(nx) \rbrace$”, Trans. Amer. Math. Soc., 57 (1945), 332–363 |
6. |
Bohr H., “$\ddot{U}$ber die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien $\sum a_n/n^s$”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., A9 (1913), 441–488 |
7. |
Bourdon P. S., “Rudin's orthogonality problem and the Nevanlinna counting function”, Proc. Amer. Math. Soc., 125:4 (1997), 1187–1192 |
8. |
Bourgin D. G., “On certain sequences of functions”, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 1–5 |
9. |
Bourgin D. G., “A class of sequences of functions”, Trans. Amer. Math. Soc., 60 (1946), 478–518 |
10. |
Chacón G. A., Chacón G. R., Giménez J., “Composition operators on the Dirichlet space and related problems”, Bol. Asoc. Mat. Venez., 13:2 (2006), 155–164 |
11. |
Cole B., Gamelin T., “Representing measures and Hardy spaces for the infinite polydisk algebra”, Proc. Lond. Math. Soc. (3), 53 (1986), 112–142 |
12. |
Christensen O., An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd ed., Birkhäuser/Springer, Cham, 2016 |
13. |
Dan H., Guo K., “The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisk”, J. Lond. Math. Soc. (2), 103 (2021), 1–34 |
14. |
Dan H., Guo K., The solutions to the Wintner–Beurling problem in the class of step functions, arXiv: 2005.09779 |
15. |
Guo K., Zheng D., “Rudin orthogonality problem on the Bergman space”, J. Funct. Anal., 261 (2011), 51–68 |
16. |
Heil C., A Basis theory primer, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2011 |
17. |
Hedenmalm H., Lindqvist P., Seip K., “A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86 (1997), 1–37 |
18. |
Nikolski N., “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc”, Ann. Inst. Fourier (Grenoble), 62:5 (2012), 1601–1625 |
19. |
Nikolski N., “Binomials whose dilations generate $H^2(\mathbb{D})$”, Алгебра и анализ, 29:6 (2017), 159–177 |
20. |
Olofsson A., “On the shift semigroup on the Hardy space of Dirichlet series”, Acta Math. Hungar., 128:3 (2010), 265–286 |
21. |
Schmüdgen K., The moment problem, Grad. Texts in Math., 277, Springer, Cham, 2017 |
22. |
Seip K., Hardy spaces of Dirichlet series and the Riemann zeta function, Nonlinear Funct. Anal., Valencia, 2017 |
23. |
Saksman E., Seip K., “Some open questions in analysis for Dirichlet series”, Recent progress on operator theory and approximation in spaces of analytic functions, Contemp. Math., 679, Amer. Math. Soc., Providence, RI, 2016, 179–191 |
24. |
Sundberg C., “Measures induced by analytic functions and a problem of Walter Rudin”, J. Amer. Math. Soc., 16 (2003), 69–90 |
25. |
Wintner A., “Diophantine approximations and Hilbert's space”, Amer. J. Math., 66 (1944), 564–578 |