RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2023, том 35, выпуск 3, страницы 17–37 (Mi aa1865)

On the vanishing of Green's function, desingularization and Carleman's method
R. Gibara, D. Kinzebulatov

Список литературы

1. А. Г. Белый, Семенов Ю. А., “К Lp-теории шредингеровских полугрупп. II”, Сиб. мат. ж., 31:4 (1990), 16–26  mathnet  mathscinet  zmath
2. Bogdan K., Grzywny T., Jakubowski T., Pilarczyk D., “Fractional Laplacian with Hardy potential”, Comm. Partial Differential Equations, 44:1 (2019), 20–50  crossref  mathscinet
3. Chang S. Y. A., Wilson J. M., Wolff T. H., “Some weighted norm inequalities concerning the Schrödinger operator”, Comment. Math. Helv., 60:2 (1985), 217–246  crossref  mathscinet  zmath
4. Cho S., Kim P., Song R., Vondraček Z., “Factorization and estimates of Dirichlet heat kernels for nonlocal operators with critical killings”, J. Math. Pures Appl. (9), 143 (2020), 208–256  crossref  mathscinet  zmath
5. Davey B., Zhu J., “Quantitative uniqueness of solutions to second-order elliptic equations with singular lower order terms”, Comm. Partial Differential Equations, 44:11 (2019), 1217–1251  crossref  mathscinet  zmath
6. Jakubowski T., Wang J., “Heat kernel estimates for fractional Schrödinger operators with negative Hardy potential”, Potential Anal., 53:3 (2020), 997–1024  crossref  mathscinet  zmath
7. Jerison D., Kenig C. E., “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann. of Math. (2), 121:3 (1985), 463–494  crossref  mathscinet  zmath
8. Kato T., “Growth properties of solutions of the reduced wave equation with a variable coefficient”, Comm. Pure Appl. Math., 12 (1959), 403–425  crossref  mathscinet  zmath
9. Kovalenko V. F., Perelmuter M. A., Semënov Yu. A., “Schrödinger operators with ${L\sp{1/2}\sb{W}}( R\sp{l})$-potentials”, J. Math. Phys., 22:5 (1981), 1033–1044  crossref  mathscinet  zmath
10. Kinzebulatov D., Semënov Yu. A., “Fractional Kolmogorov operator and desingularizing weights”, Publ. RIMS (to appear)
11. Kinzebulatov D., Semënov Yu. A., Szczypkowski K., “Heat kernel of fractional Laplacian with Hardy drift via desingularizing weights”, J. London Math. Soc., 104:4 (2021), 1861–1900  crossref  mathscinet  zmath
12. Kinzebulatov D., Shartser L., “Unique continuation for Schroedinger operators. Towards an optimal result”, J. Funct. Anal., 258:8 (2010), 2662–2681  crossref  mathscinet  zmath
13. Klein A., Tsang S., “Quantitative unique continuation principle for Schrödinger operators with singular potentials”, Proc. Amer. Math. Soc., 144:2 (2016), 665–679  crossref  mathscinet  zmath
14. Li Z., Zhang Q. S., “Regularity of weak solutions of elliptic and parabolic equations with some critical or supercritical potentials”, J. Differential Equations, 263:1 (2017), 57–87  crossref  mathscinet  zmath
15. Liskevich V. A., Semenov Yu. A., “Some problems on Markov semigroups”, Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, Adv. Partial Differential Equations Math. Top., 11, Akad. Verlag, Berlin, 1996, 163–217  mathscinet  zmath
16. Malinnikova E., Vessella S., “Quantitative uniqueness for elliptic equations with singular lower order terms”, Math. Ann., 353:4 (2012), 1157–1181  crossref  mathscinet  zmath
17. Mazya V. G., Verbitsky I. E., “The Schrödinger operator on the energy space: boundedness and compactness criteria”, Acta Math., 188:2 (2002), 263–302  crossref  mathscinet  zmath
18. Metafune G., Sobajima M., Spina C., “Kernel estimates for elliptic operators with second order discontinuous coefficients”, J. Evol. Equ., 17:1 (2017), 485–522  crossref  mathscinet
19. Metafune G., Negro L., and Spina C., “Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients”, J. Evol. Equ., 18:2 (2018), 467–514  crossref  mathscinet
20. Milman P. D., Semënov Yu. A., Desingularizing weights and heat kernel bounds, Preprint, 1998  mathscinet
21. Milman P. D., Semënov Yu. A., “Global heat kernel bounds via desingularizing weights”, J. Funct. Anal., 212:2 (2004), 373–398  crossref  mathscinet
22. Milman P. D., Semënov Yu. A., “Heat kernel bounds and desingularizing weights”, J. Funct. Anal., 202:1 (2003), 1–24  crossref  mathscinet  zmath
23. Sawyer E. T., “Unique continuation for Schrödinger operators in dimensions three or less”, Ann. Inst. Fourier (Grenoble), 34:3 (1984), 189–200  crossref  mathscinet  zmath
24. Семёнов Ю. А., “Гладкость обобщенных решений уравнений $H^u=f$ и существенная самосопряженность оператора $\widehat{H} =-\sum_{i,k=1}^d \nabla_i a_{ij}\nabla_j+V$ с измеримыми коэффициентами”, Мат. сб., 127:3 (1985), 311–335  mathnet  mathscinet
25. Stein E. M., “Appendix to “Unique continuation””, Ann. of Math. (2), 121:3 (1985), 489–494  crossref  mathscinet


© МИАН, 2025