|
|
|
Список литературы
|
|
|
1. |
А. Г. Белый, Семенов Ю. А., “К Lp-теории шредингеровских полугрупп. II”, Сиб. мат. ж., 31:4 (1990), 16–26 |
2. |
Bogdan K., Grzywny T., Jakubowski T., Pilarczyk D., “Fractional Laplacian with Hardy potential”, Comm. Partial Differential Equations, 44:1 (2019), 20–50 |
3. |
Chang S. Y. A., Wilson J. M., Wolff T. H., “Some weighted norm inequalities concerning the Schrödinger operator”, Comment. Math. Helv., 60:2 (1985), 217–246 |
4. |
Cho S., Kim P., Song R., Vondraček Z., “Factorization and estimates of Dirichlet heat kernels for nonlocal operators with critical killings”, J. Math. Pures Appl. (9), 143 (2020), 208–256 |
5. |
Davey B., Zhu J., “Quantitative uniqueness of solutions to second-order elliptic equations with singular lower order terms”, Comm. Partial Differential Equations, 44:11 (2019), 1217–1251 |
6. |
Jakubowski T., Wang J., “Heat kernel estimates for fractional Schrödinger operators with negative Hardy potential”, Potential Anal., 53:3 (2020), 997–1024 |
7. |
Jerison D., Kenig C. E., “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann. of Math. (2), 121:3 (1985), 463–494 |
8. |
Kato T., “Growth properties of solutions of the reduced wave equation with a variable coefficient”, Comm. Pure Appl. Math., 12 (1959), 403–425 |
9. |
Kovalenko V. F., Perelmuter M. A., Semënov Yu. A., “Schrödinger operators with ${L\sp{1/2}\sb{W}}( R\sp{l})$-potentials”, J. Math. Phys., 22:5 (1981), 1033–1044 |
10. |
Kinzebulatov D., Semënov Yu. A., “Fractional Kolmogorov operator and desingularizing weights”, Publ. RIMS (to appear) |
11. |
Kinzebulatov D., Semënov Yu. A., Szczypkowski K., “Heat kernel of fractional Laplacian with Hardy drift via desingularizing weights”, J. London Math. Soc., 104:4 (2021), 1861–1900 |
12. |
Kinzebulatov D., Shartser L., “Unique continuation for Schroedinger operators. Towards an optimal result”, J. Funct. Anal., 258:8 (2010), 2662–2681 |
13. |
Klein A., Tsang S., “Quantitative unique continuation principle for Schrödinger operators with singular potentials”, Proc. Amer. Math. Soc., 144:2 (2016), 665–679 |
14. |
Li Z., Zhang Q. S., “Regularity of weak solutions of elliptic and parabolic equations with some critical or supercritical potentials”, J. Differential Equations, 263:1 (2017), 57–87 |
15. |
Liskevich V. A., Semenov Yu. A., “Some problems on Markov semigroups”, Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, Adv. Partial Differential Equations Math. Top., 11, Akad. Verlag, Berlin, 1996, 163–217 |
16. |
Malinnikova E., Vessella S., “Quantitative uniqueness for elliptic equations with singular lower order terms”, Math. Ann., 353:4 (2012), 1157–1181 |
17. |
Mazya V. G., Verbitsky I. E., “The Schrödinger operator on the energy space: boundedness and compactness criteria”, Acta Math., 188:2 (2002), 263–302 |
18. |
Metafune G., Sobajima M., Spina C., “Kernel estimates for elliptic operators with second order discontinuous coefficients”, J. Evol. Equ., 17:1 (2017), 485–522 |
19. |
Metafune G., Negro L., and Spina C., “Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients”, J. Evol. Equ., 18:2 (2018), 467–514 |
20. |
Milman P. D., Semënov Yu. A., Desingularizing weights and heat kernel bounds, Preprint, 1998 |
21. |
Milman P. D., Semënov Yu. A., “Global heat kernel bounds via desingularizing weights”, J. Funct. Anal., 212:2 (2004), 373–398 |
22. |
Milman P. D., Semënov Yu. A., “Heat kernel bounds and desingularizing weights”, J. Funct. Anal., 202:1 (2003), 1–24 |
23. |
Sawyer E. T., “Unique continuation for Schrödinger operators in dimensions three or less”, Ann. Inst. Fourier (Grenoble), 34:3 (1984), 189–200 |
24. |
Семёнов Ю. А., “Гладкость обобщенных решений уравнений $H^u=f$ и существенная самосопряженность оператора $\widehat{H} =-\sum_{i,k=1}^d \nabla_i a_{ij}\nabla_j+V$ с измеримыми коэффициентами”, Мат. сб., 127:3 (1985), 311–335 |
25. |
Stein E. M., “Appendix to “Unique continuation””, Ann. of Math. (2), 121:3 (1985), 489–494 |