RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2024, том 36, выпуск 1, страницы 195–203 (Mi aa1905)

A general formula for Hecke-type false theta functions
E. T. Mortenson

Список литературы

1. Andrews G. E., Berndt B. C., Ramanujan's lost notebook, v. II, Springer, New York, 2009  mathscinet
2. Andrews G. E., Hickerson D. R., “Ramanujan's “lost” notebook. VII. The sixth order mock theta functions”, Adv. Math., 89:1 (1991), 60–105  crossref  mathscinet  zmath
3. Andrews G. E., Warnaar S. O., “The Bailey transform and false theta functions”, Ramanujan J., 14:1 (2007), 173–188  crossref  mathscinet  zmath
4. Chan S. H., Kim B., “On some double-sum false theta series”, J. Number Theory, 190 (2018), 40–55  crossref  mathscinet  zmath
5. Kim B., Lovejoy J., “Partial indefinite theta identities”, J. Aust. Math. Soc., 102:2 (2017), 255–289  crossref  mathscinet  zmath
6. Habiro K., “A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres”, Invent. Math., 171:1 (2008), 1–81  crossref  mathscinet  zmath
7. Hickerson D. R., Mortenson E. T., “Hecke-type double sums, Appell–Lerch sums, and mock theta functions. I”, Proc. Lond. Math. Soc. (3), 109:2 (2014), 382–422  crossref  mathscinet  zmath
8. K. Hikami, “Hecke type formula for unified Witten–Reshetikhin–Turaev invariants of higher-order mock theta functions”, Int. Math. Res. Not. IMRN, 2007, no. 7, rnm 022, 32 pp.  mathscinet
9. Hikami K., Lovejoy J., “Torus knots and quantum modular forms”, Res. Math. Sci., 2 (2015), 2, 15 pp.  crossref  mathscinet  zmath
10. Lawrence R., Zagier D., “Modular forms and quantum invariants of $3$-manifolds”, Asian J. Math., 3:1 (1999), 93–107  crossref  mathscinet  zmath
11. Matsusaka T., Hikami's observations on unified WRT invariants and false theta functions, arXiv: 2212.06337
12. Mortenson E. T., “Ramanujan's $_{1}\psi_1$ summation, Hecke-type double sums, and Appell–Lerch sums”, Ramanjuan J., 29:1-3 (2012), 121–133  crossref  mathscinet  zmath
13. Mortenson E. T., “On the dual nature of partial theta functions and Appell–Lerch sums”, Adv. Math., 264 (2014), 236–260  crossref  mathscinet  zmath
14. Mortenson E. T., “A double-sum Kronecker-type identity”, Adv. in Appl. Math., 82 (2017), 155–177  crossref  mathscinet  zmath
15. Mortenson E. T., “A heuristic guide to evaluating triple-sums”, Hardy–Ramanujan J., 43 (2020), 99–121  mathscinet  zmath
16. Mortenson E. T., “Hecke–Rogers double-sums and false theta functions”, Res. Number Theory, 7:2 (2021), 28, 20 pp.  crossref  mathscinet  zmath
17. Murakami Y., Witten–Reshetikhin–Turaev invariants and indefinite false theta functions for plumbing indefinite H-graphs, arXiv: 2212.09972v1  mathscinet
18. Mortenson E. T., Zwegers S., “The mixed mock modularity of certain duals of generalized quantum modular forms of Hikami and Lovejoy”, Adv. Math., 418 (2023), 108944, 27 pp.  crossref  mathscinet  zmath
19. Ramanujan S., The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publ. House, New Delhi, 1988  mathscinet  zmath
20. Zwegers S. P., Mock theta functions, Ph.D. Thesis, Univ. Utrecht, 2002  zmath


© МИАН, 2025