|
|
|
Список литературы
|
|
|
1. |
Васюнин В. И., Затицкий П. Б., “Некоторые экстремальные задачи для мартингальных преобразований. I”, Зап. науч. семин. ПОМИ, 527, 2023, 5–53 |
2. |
Вейс Г., Стейн И., Введение в гармонический анализ на евклидовых пространствах, Мир, М., 1974 |
3. |
Крылов Н. В., “Гладкость функции выигрыша для управляемого диффузионного процесса в области”, Изв. АН СССР. Сер. мат., 53:1 (1989), 66–96 |
4. |
Новиков М. И., “Достаточные условия минимальности бивогнутых функций”, Алгебра и анализ, 34:5 (2022), 173–210 |
5. |
Boole G., “On the comparison of transcendents, with certain applications to the theory of definite integrals”, Proc. Royal Soc. London, 8 (1856), 461–463 |
6. |
Burkholder D. L., “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Probab., 12:3 (1984), 647–702 |
7. |
Colzani L., Laeng E., Monzon L., “Variations on a theme of Boole and Stein-Weiss”, J. Math. Anal. Appl., 363:1 (2010), 225–229 |
8. |
Conti S., Faraco D., Maggi F., “A new approach to counterexamples to $L^1$ estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions”, Arch. Ration. Mech. Anal., 175:2 (2005), 287–300 |
9. |
Dacorogna B., Direct methods in the calculus of variations, Appl. Math. Sci., 78, Second ed., Springer, New York, 2008 |
10. |
Faraco D., Guerra A., “Remarks on Ornstein's non-inequality in $\Bbb R^{2\times2}$”, Q. J. Math., 73:1 (2022), 17–21 |
11. |
Ivanisvili P., Osipov N. N., Stolyarov D. M., Vasyunin V. I., Zatitskiy P. B., “Bellman function for extremal problems in BMO”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 |
12. |
Ivanisvili P., Stolyarov D. M., Vasyunin V. I., Zatitskiy P. B., “Bellman function for extremal problems in BMO. II. Evolution”, Mem. Amer. Math. Soc., 255:1220 (2018), 1–133 |
13. |
Iwaniec T., “Nonlinear Cauchy-Riemann operators in ${\Bbb R}^n$”, Trans. Amer. Math. Soc., 354:5 (2002), 1961–1995 |
14. |
Kazaniecki K., Stolyarov D. M., Wojciechowski M., “Anisotropic Ornstein noninequalities”, Anal. PDE, 10:2 (2017), 351–366 |
15. |
Kirchheim B., Kristensen J., “On rank one convex functions that are homogeneous of degree one”, Arch. Ration. Mech. Anal., 221:1 (2016), 527–558 |
16. |
Kurka O., Pokorný D., “Notes on the trace problem for separately convex functions”, ESAIM Control Optim. Calc. Var., 23:4 (2017), 1617–1648 |
17. |
Osȩkowski A., “Survey article: Bellman function method and sharp inequalities for martingales”, Rocky Mountain J. Math., 43:6 (2013), 1759–1823 |
18. |
Osȩkowski A., Sharp martingale and semimartingale inequalities, Monogr. Mat. (New Ser.), 72, Birkhauser/Springer Basel AG, Basel, 2012 |
19. |
Stein E. M., Weiss G., “An extension of a theorem of Marcinkiewicz and some of its applications”, J. Math. Mech., 8 (1959), 263–284 |
20. |
Stolyarov D. M., Zatitskiy P. B., “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 |
21. |
Stolyarov D. M., Vasyunin V. I., Zatitskii P. B., Martingale transforms of bounded random variables and indicator functions of events, 2023, arXiv: 2310.02362 |
22. |
Vasyunin V. I., Volberg A., The Bellman function technique in harmonic analysis, Cambridge Stud. Adv. Math., 186, Cambridge Univ. Press, Cambridge, 2020 |
23. |
Widder D. V., “Functions harmonic in a strip”, Proc. Amer. Math. Soc., 12 (1961), 67–72 |