RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2024, Volume 36, Issue 4, Pages 148–164 (Mi aa1930)

A criterion for the power-law rate of convergence of ergodic means for unitary actions of $\mathbb{Z}^d$ and $\mathbb{R}^d$
I. V. Podvigin

References

1. Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, Uspekhi mat. nauk, 51:4 (1996), 73–124  mathnet  crossref  mathscinet  zmath
2. Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Tr. Mosk. mat. o-va, 77, no. 1, 2016, 1–66  mathnet  zmath
3. Aloisio M., Carvalho S. L., Oliveira S. R., Souza E., “On spectral measures and convergence rate in von Neumann's ergodic theorem”, Monatsh. Math., 203:3 (2024), 543–562  crossref  mathscinet
4. Tempelman A. A., Ergodicheskie teoremy na gruppakh, Mokslas, Vilnyus, 1986  mathscinet
5. Podvigin I. V., “O stepennoi skorosti skhodimosti v ergodicheskoi teoreme Vinera”, Algebra i analiz, 35:6 (2023), 159–168  mathnet
6. Cohen G., Lin M., “Double coboundaries for commuting contractions”, Pure Appl. Funct. Anal., 2:1 (2017), 11–36  mathscinet  zmath
7. Kachurovskii A. G., Podvigin I. V., Todikov V. E., Khakimbaev A. Zh., “Spektralnyi kriterii stepennoi skorosti skhodimosti v ergodicheskoi teoreme dlya $\mathbb{Z}^d$ i $\mathbb{R}^d$ deistvii”, Sib. mat. zh., 65:1 (2024), 92–114  mathnet
8. Kachurovskii A. G., “O skhodimosti srednikh v ergodicheskoi teoreme dlya grupp ${\mathbb{Z}^d}$”, Zap. nauch. semin. POMI, 256, 1999, 121–128  mathnet  zmath
9. Tempelman A., “Randomized consistent statistical inference for random processes and fields”, Stat. Inference Stoch. Process., 25 (2022), 599–627  crossref  mathscinet
10. Cohen G., Lin M., “Joint and double coboundaries of commuting contractions”, Indiana Univ. Math. J., 70:4 (2021), 1355–1394  crossref  mathscinet
11. Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, 2, Mir, M., 1975
12. Folland G. B., A course in abstract harmonic analysis, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995  mathscinet  zmath
13. Chen X.-D., Wang H., Yu J., Cheng Z., Zhu P., “New bounds of sinc function by using a family of exponential functions”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 116:1 (2022), 16, 17 pp.  crossref  mathscinet
14. Stenger F., Numerical methods based on sinc and analytic functions, Springer Ser. Comput. Math., 20, Springer-Verlag, New York, 1993  crossref  mathscinet  zmath
15. Kowalski M. A., Sikorski K. A., Stenger F., Selected topics in approximation and computation, Oxford Univ. Press, New York, 1995  mathscinet  zmath
16. Trynin A. Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Mat. sb., 198:10 (2007), 141–158  mathnet  crossref  mathscinet  zmath
17. Trynin A. Yu., “O raskhodimosti sink-priblizhenii vsyudu na ${(0,\pi)}$”, Algebra i analiz, 22:4 (2010), 232–256  mathnet
18. Trynin A. Yu., “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:3 (2016), 288–298  mathnet  mathscinet
19. Ye W., Entezari A., “A geometric construction of multivariate sinc functions”, IEEE Trans. Image Process., 21:6 (2012), 2969–2979  crossref  mathscinet  zmath
20. Abel U., Kushnirevych V., “Sinc integrals revisited”, Math. Semesterber., 70:2 (2023), 147–164  crossref  mathscinet
21. Ball K., “Cube slicing in $R^n$”, Proc. Amer. Math. Soc., 97 (1986), 465–473  mathscinet  zmath
22. Liflyand E., “Ball's lemma as an exercise”, Chebyshevskii sb., 22:3 (2021), 464–466  mathnet  crossref  zmath
23. Kerman R., Ol'hava R., Spektor S., “An asymptotically sharp form of Ball's integral inequality”, Proc. Am. Math. Soc., 143:9 (2015), 3839–3846  crossref  mathscinet  zmath
24. Spektor S., “An asymptotically sharp form of Ball's integral inequality by probability methods”, Bull. Lond. Math. Soc., 53:5 (2021), 1333–1337  crossref  mathscinet  zmath
25. Kachurovskii A. G., Podvigin I. V., Todikov V. E., “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. elektron. matem. izv., 20 №1 (2023), 183–206  mathnet  mathscinet
26. Bogachev V. I., Teoriya mery, v. 1, RKhD, M.-Izhevsk, 2003
27. Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962
28. Karpushkin V. N., “Ravnomernye otsenki ob'emov”, Tr. Mat. in-ta RAN, 221, 1998, 225–231  mathnet  zmath
29. Greenblatt M., “Oscillatory integral decay, sublevel set growth, and the Newton polyhedron”, Math. Ann., 346:4 (2010), 857–895  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025