|
|
|
References
|
|
|
1. |
Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, Uspekhi mat. nauk, 51:4 (1996), 73–124 |
2. |
Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Tr. Mosk. mat. o-va, 77, no. 1, 2016, 1–66 |
3. |
Aloisio M., Carvalho S. L., Oliveira S. R., Souza E., “On spectral measures and convergence rate in von Neumann's ergodic theorem”, Monatsh. Math., 203:3 (2024), 543–562 |
4. |
Tempelman A. A., Ergodicheskie teoremy na gruppakh, Mokslas, Vilnyus, 1986 |
5. |
Podvigin I. V., “O stepennoi skorosti skhodimosti v ergodicheskoi teoreme Vinera”, Algebra i analiz, 35:6 (2023), 159–168 |
6. |
Cohen G., Lin M., “Double coboundaries for commuting contractions”, Pure Appl. Funct. Anal., 2:1 (2017), 11–36 |
7. |
Kachurovskii A. G., Podvigin I. V., Todikov V. E., Khakimbaev A. Zh., “Spektralnyi kriterii stepennoi skorosti skhodimosti v ergodicheskoi teoreme dlya $\mathbb{Z}^d$ i $\mathbb{R}^d$ deistvii”, Sib. mat. zh., 65:1 (2024), 92–114 |
8. |
Kachurovskii A. G., “O skhodimosti srednikh v ergodicheskoi teoreme dlya grupp ${\mathbb{Z}^d}$”, Zap. nauch. semin. POMI, 256, 1999, 121–128 |
9. |
Tempelman A., “Randomized consistent statistical inference for random processes and fields”, Stat. Inference Stoch. Process., 25 (2022), 599–627 |
10. |
Cohen G., Lin M., “Joint and double coboundaries of commuting contractions”, Indiana Univ. Math. J., 70:4 (2021), 1355–1394 |
11. |
Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, 2, Mir, M., 1975 |
12. |
Folland G. B., A course in abstract harmonic analysis, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995 |
13. |
Chen X.-D., Wang H., Yu J., Cheng Z., Zhu P., “New bounds of sinc function by using a family of exponential functions”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 116:1 (2022), 16, 17 pp. |
14. |
Stenger F., Numerical methods based on sinc and analytic functions, Springer Ser. Comput. Math., 20, Springer-Verlag, New York, 1993 |
15. |
Kowalski M. A., Sikorski K. A., Stenger F., Selected topics in approximation and computation, Oxford Univ. Press, New York, 1995 |
16. |
Trynin A. Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Mat. sb., 198:10 (2007), 141–158 |
17. |
Trynin A. Yu., “O raskhodimosti sink-priblizhenii vsyudu na ${(0,\pi)}$”, Algebra i analiz, 22:4 (2010), 232–256 |
18. |
Trynin A. Yu., “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:3 (2016), 288–298 |
19. |
Ye W., Entezari A., “A geometric construction of multivariate sinc functions”, IEEE Trans. Image Process., 21:6 (2012), 2969–2979 |
20. |
Abel U., Kushnirevych V., “Sinc integrals revisited”, Math. Semesterber., 70:2 (2023), 147–164 |
21. |
Ball K., “Cube slicing in $R^n$”, Proc. Amer. Math. Soc., 97 (1986), 465–473 |
22. |
Liflyand E., “Ball's lemma as an exercise”, Chebyshevskii sb., 22:3 (2021), 464–466 |
23. |
Kerman R., Ol'hava R., Spektor S., “An asymptotically sharp form of Ball's integral inequality”, Proc. Am. Math. Soc., 143:9 (2015), 3839–3846 |
24. |
Spektor S., “An asymptotically sharp form of Ball's integral inequality by probability methods”, Bull. Lond. Math. Soc., 53:5 (2021), 1333–1337 |
25. |
Kachurovskii A. G., Podvigin I. V., Todikov V. E., “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Sib. elektron. matem. izv., 20 №1 (2023), 183–206 |
26. |
Bogachev V. I., Teoriya mery, v. 1, RKhD, M.-Izhevsk, 2003 |
27. |
Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962 |
28. |
Karpushkin V. N., “Ravnomernye otsenki ob'emov”, Tr. Mat. in-ta RAN, 221, 1998, 225–231 |
29. |
Greenblatt M., “Oscillatory integral decay, sublevel set growth, and the Newton polyhedron”, Math. Ann., 346:4 (2010), 857–895 |