|
|
|
Список литературы
|
|
|
1. |
Acciaio B., Beiglböck M., Pammer G., “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 |
2. |
Alibert J.-J., Bouchitté G., Champion T., “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 |
3. |
Ambrosio L., Brué E., Semola D., Lectures on optimal transport, Unitext, 130, Springer, Cham, 2021 |
4. |
Ambrosio l., Gigli N., “A user's guide to optimal transport”, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 |
5. |
Backhoff-Veraguas J., Beiglböck M., Pammer G., “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp. |
6. |
Backhoff-Veraguas J., Beiglböck M., Pammer G., “Weak monotone rearrangement on the line”, Electron. Commun. Probab., 25 (2020), 18, 16 pp. |
7. |
Backhoff-Veraguas J., Pammer G., “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 |
8. |
Beiglböck M., Goldstern M., Maresch G., Schachermayer W., “Optimal and better transport plans”, J. Funct. Anal., 256:6 (2009), 1907–1927 |
9. |
Богачев В. И., “Задачи Канторовича с параметрами и ограничениями на плотности”, Сиб. мат. ж., 63:1 (2022), 42–57 |
10. |
Богачев В. И., “Задача Канторовича оптимальной транспортировки мер: новые направления исследований”, Успехи мат. наук, 77:5 (2022), 3–52 |
11. |
Богачев В. И., Калинин А. Н., Попова С. Н., “О равенстве значений в задачах Монжа и Канторовича”, Зап. науч. семин. ПОМИ, 457 (2017), 53–73 |
12. |
Богачев В. И., Колесников А. В., “Задача Монжа-Канторовича: достижения, связи и перспективы”, Успехи мат. наук, 67:5 (2012), 3–110 |
13. |
Богачев В. И., Резбаев А. В., “Существование решений нелинейной задачи Канторовича оптимальной транспортировки”, Мат. заметки, 112:3 (2022), 300–310 |
14. |
Богачев В. И., Теория меры, т. 1, 2, РХД, М.-Ижевск, 2003 |
15. |
Bogachev V. I., Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 |
16. |
Bogachev V. I., Malofeev I. I., “Nonlinear Kantorovich problems depending on a parameter”, Изв. Иркутск. гос. ун-та. Сер. мат., 41 (2022), 96–106 |
17. |
Богачев В. И., Попова С. Н., “Расстояния Хаусдорфа между каплингами и оптимальная транспортировка с параметром”, Мат. сб., 215:1 (2024), 33–58 |
18. |
Bogachev V. I., Popova S. N., Rezbaev A. V., “On nonlinear Kantorovich problems with density constraints”, Moscow Mat. J., 23:3 (2023), 285–307 |
19. |
Gozlan N., Roberto C., Samson P.-M., Tetali P., “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 |
20. |
Gozlan N., Juillet N., “On a mixture of Brenier and Strassen theorems”, Proc. London Math. Soc. (3), 120:3 (2020), 434–463 |
21. |
Pratelli A., “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincaré (B) Probab. Statist., 43:1 (2007), 1–13 |
22. |
Santambrogio F., Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015 |
23. |
Strassen V., “The existence of probability measures with given marginals”, Ann. Math. Statist., 36 (1965), 423–439 |
24. |
Villani C., Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 |