|
|
|
Список литературы
|
|
|
1. |
David G., Journé J.-L., “A boundedness criterion for generalized Calderón-Zygmund operators”, Ann. of Math. (2), 120:2 (1984), 371–397 |
2. |
Doubtsov E., Vasin A. V., “Calderón-Zygmund operators on RBMO”, Proc. Amer. Math. Soc., 151:2 (2023), 595–610 |
3. |
Gatto A. E., “Boundedness on inhomogeneous Lipschitz spaces of fractional integrals singular integrals and hypersingular integrals associated to non-doubling measures”, Collect. Math., 60:1 (2009), 101–114 |
4. |
Hansson T., “On Hardy spaces in complex ellipsoids”, Ann. Inst. Fourier (Grenoble), 49:5 (1999), 1477–1501 |
5. |
Hu G., Meng Y., Yang Da., “A new characterization of regularized BMO spaces on non-homogeneous spaces and its applications”, Ann. Acad. Sci. Fenn. Math., 38:1 (2013), 3–27 |
6. |
Hytönen T., Yang Da., Yang Do., “The Hardy space $H^1$ on non-homogeneous metric spaces”, Math. Proc. Cambridge Philos. Soc., 153:1 (2012), 9–31 |
7. |
Mateu J., Mattila P., Nicolau A., Orobitg J., “BMO for nondoubling measures”, Duke Math. J., 102:3 (2000), 533–565 |
8. |
Nazarov F., Treil S., A. Volberg A., “The $Tb$-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 |
9. |
Sjödin T., “On properties of functions with conditions on their mean oscillation over cubes”, Ark. Mat., 20:2 (1982), 275–291 |
10. |
Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monogr. Harmonic Anal. III, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 |
11. |
Tolsa X., “BMO, $H^1$, and Calderón-Zygmund operators for non doubling measures”, Math. Ann., 319:1 (2001), 89–149 |