RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2008, том 20, выпуск 3, страницы 112–162 (Mi aa515)

Fesenko Reciprocity Map
K. I. Ikeda, E. Serbest

Список литературы

1. Fesenko I. B., “Local reciprocity cycles”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, eds. I. B. Fesenko and M. Kurihara, Geom. Topol. Publ., Coventry, 2000, 293–298  mathscinet  zmath
2. Fesenko I. B., “Nonabelian local reciprocity maps”, Class Field Theory — Its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, ed. K. Miyake, Math. Soc. Japan, Tokyo, 2001, 63–78  mathscinet  zmath
3. Fesenko I. B., “On the image of noncommutative local reciprocity map”, Homology, Homotopy Appl., 7 (2005), 53–62  mathscinet  zmath
4. Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993  mathscinet  zmath
5. Fontaine J.-M., Wintenberger J.-P., “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A367–A370.  mathscinet
6. Fontaine J.-M., Wintenberger J.-P., “Extensions algébriques et corps des normes des extensions $APF$ des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A441–A444  mathscinet
7. Gurevich A., Description of Galois groups of local fields with the aid of power series, Ph.D. Thesis, Humboldt Univ., Berlin, 1998
8. Hazewinkel M., “Local class field theory is easy”, Adv. Math., 18 (1975), 148–181  crossref  mathscinet  zmath
9. Ikeda K. I., Ikeda M., “Two lemmas on formal power series”, Turkish J. Math., 23 (1999), 435–440  mathscinet  zmath
10. Ikeda K. I., Serbest E., Non-abelian local class field theory, Preprint
11. Ikeda K. I., Serbest E., paper A remark on Sen's theory on Galois representations, in preparation
12. Iwasawa K., Local class field theory, Oxford Univ. Press, Clarendon Press, New York, 1986  mathscinet  zmath
13. Koch H., de Shalit E., “Metabelian local class field theory”, J. Reine Angew. Math., 478 (1996), 85–106  mathscinet  zmath
14. Laubie F., “Une théorie du corps de classes local non abélien”, Compositio Math., 143 (2007), 339–362  mathscinet  zmath
15. Neukirch J., Class field theory, Grundlehren Math. Wiss., 280, Springer-Verlag, Berlin, 1986  mathscinet  zmath
16. Serre J.-P., Corps locaux, $2^{\rm me}$ éd., Publ. Inst. Math. Univ. Nancago, 8, Actualités Sci. Indust., 1296, Hermann, Paris, 1968  mathscinet
17. Wintenberger J.-P., “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 16 (1983), 59–89  mathscinet  zmath


© МИАН, 2025