|
|
|
References
|
|
|
1. |
Peller V. V., “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 |
2. |
Peller V. V., “Hankel operators in the perturbation theory of unbounded selfadjoint operators”, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 |
3. |
Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsessy, Probl. mat. fiz., 1, LGU, L., 1966, 33–67 |
4. |
Bennett G., “Schur multipliers”, Duke Math. J., 44 (1977), 603–639 |
5. |
Nikolskaya L. N., Farforovskaya Yu. B., “Tëplitsevy i gankelevy matritsy kak multiplikatory Adamara–Shura”, Algebra i analiz, 15:6 (2003), 141–160 |
6. |
Matsaev V. N., “Ob odnom klasse vpolne nepreryvnykh operatorov”, Dokl. AN SSSR, 139:3 (1961), 548–551 |
7. |
Polya G., “Remarks on characteristic functions”, Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability (1945, 1946), Univ. California Press, Berkeley–Los Angeles, 1949, 115–123 |
8. |
Bochner S., “Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse”, Math. Ann., 108 (1933), 378–410 |
9. |
Herglotz G., “Über Potenzreihen mit positivem, reellem Teil im Einheitskreis”, S.-B. Sächs. Akad. Wiss., 63 (1911), 501–511 |
10. |
Schur J., “Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen”, J. Reine Angew. Math., 140 (1911), 1–28 |
11. |
Helson H., Harmonic analysis, Addison-Wesley Publ. Co., Reading, MA, 1983 |
12. |
Farforovskaya Yu. B., “Dvoinye operatornye integraly i ikh otsenki v ravnomernoi norme”, Zap. nauch. semin. POMI, 232, 1996, 148–173 |
13. |
Farforovskaya Yu. B., “Otsenka normy $|f(B)-f(A)|$ dlya samosopryazhennykh operatorov $A$ i $B$”, Zap. nauch. semin. LOMI, 56, 1976, 143–162 |
14. |
Farforovskaya Yu. B., “Otsenki kommutatorov normalnykh operatorov”, Algebra i analiz, 11:4 (1999), 204–221 |
15. |
Farforovskaya Yu. B., Nikolskaia L., “An inequality for commutators of normal operators”, Acta Sci. Math. (Szeged), 71 (2005), 751–765 |