RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2003, Volume 15, Issue 2, Pages 190–237 (Mi aa792)

Linear-similar Sz.-Nagy–Foias model in a domain
D. V. Yakubovich

References

1. Arov D. Z., “Passivnye lineinye statsionarnye dinamicheskie sistemy”, Sib. mat. zh., 20:2 (1979), 211–228  mathnet  mathscinet  zmath
2. Arov D. Z., Nudelman M. A., “Priznaki podobiya vsekh minimalnykh passivnykh realizatsii zadannoi peredatochnoi funktsii (matritsy rasseyaniya i soprotivleniya)”, Mat. sb., 193:6 (2002), 3–24  mathnet  mathscinet  zmath
3. Vasyunin V. I., Kupin S., “Kriterii podobiya dissipativnogo integralnogo operatora normalnomu”, Algebra i analiz, 13:3 (2001), 65–104  mathnet  mathscinet
4. Gokhberg I. Ts., Krein M. G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. anal. i pril., 1:1 (1967), 38–60  mathnet  mathscinet  zmath
5. Gubreev G. M., “Spektralnaya teoriya regulyarnykh kvazieksponent i regulyarnykh $B$-predstavimykh vektor-funktsii (metod proektirovaniya: 20 let spustya)”, Algebra i analiz, 12:6 (2000), 1–97  mathnet  mathscinet
6. Kapustin V. V., “Spektralnyi analiz pochti unitarnykh operatorov”, Algebra i analiz, 13:5 (2001), 44–68  mathnet  mathscinet  zmath
7. Likhtarnikov A. L., Yakubovich V. A., “Chastotnaya teorema dlya uravnenii evolyutsionnogo tipa”, Sib. mat. zh., 17:5 (1976), 1069–1085  mathnet  mathscinet  zmath
8. Malamud M. M., “Kriterii podobiya zamknutogo operatora samosopryazhennomu”, Ukr. mat. zh., 37:1 (1985), 49–56  mathscinet  zmath
9. Malamud M. M., “O podobii treugolnogo operatora diagonalnomu”, Zap. nauch. semin. POMI, 270, 2000, 201–241  mathnet  mathscinet  zmath
10. Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. Mat. in-ta AN SSSR, 147, 1980, 86–114  mathnet  mathscinet  zmath
11. Naboko S. N., “Ob usloviyakh podobiya unitarnym i samosopryazhennym operatoram”, Funkts. anal. i ego pril., 18:1 (1984), 16–27  mathnet  mathscinet  zmath
12. Naboko S. N., Faddeev M. M., “Operatory modeli Fridrikhsa, podobnye samosopryazhennym”, Vestn. Leningr. un-ta. Ser. fiz., khim., 1990, no. 4, 78–82  mathscinet
13. Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980  mathscinet
14. Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. mat., 39:1 (1975), 123–148  mathnet  zmath
15. Pavlov B., “Nonphysical sheet for perturbed Jacobian matrices”, Algebra i analiz, 6:3 (1994), 185–199  mathnet  mathscinet
16. Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950
17. Ryzhov V. A., “Absolyutno nepreryvnye i singulyarnye podprostranstva nesamosopryazhennogo operatora”, Zap. nauch. semin. POMI, 222, 1995, 163–202  mathnet
18. Sakhnovich L. A., “Dissipativnye operatory s absolyutno nepreryvnym spektrom”, Tr. Mosk. mat. o-va, 19, 1968, 211–270  mathnet  zmath
19. Solomyak B. M., “O funktsionalnoi modeli dlya dissipativnykh operatorov. Beskoordinatnyi podkhod”, Zap. nauch. semin. LOMI, 178, 1989, 57–91  mathnet
20. Sekefalvi-Nad V., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970  mathscinet
21. Fedorov S. I., “O garmonicheskom analize v mnogosvyaznoi oblasti i kharakter-avtomorfnykh prostranstvakh Khardi”, Algebra i analiz, 9:2 (1997), 192–240  mathnet  zmath
22. Shtraus A. V., “Kharakteristicheskie funktsii lineinykh operatorov”, Izv. AN SSSR. Ser. mat., 24:1 (1960), 43–74  mathnet  zmath
23. Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962
24. Yakubovich V. A., “Chastotnaya teorema dlya sluchaya, kogda prostranstva sostoyanii i upravlenii – gilbertovy, i ee primenenie v nekotorykh zadachakh sinteza optimalnogo upravleniya. II”, Sib. mat. zh., 16:5 (1975), 1081–1102  mathnet  mathscinet  zmath
25. Alpay D., Vinnikov V., “Finite dimensional de Branges spaces on Riemann surfaces”, J. Funct. Anal., 189:2 (2002), 283–324  crossref  mathscinet  zmath
26. Arov D. Z., Nudelman M. A., “Passive linear stationary dynamical scattering systems with continuous time”, Integral Equations Operator Theory, 24 (1996), 1–45  crossref  mathscinet  zmath
27. Arova Z., “On $J$-unitary nodes with strongly regular $J$-inner characteristic functions in the Hardy class $H_2^{n\times n}$”, Operator Theoretical Methods (Timio̧ara, 1998), Theta Found., Bucharest, 2000, 29–38  mathscinet  zmath
28. Avdonin S. A., Ivanov S. A., “Families of exponentials”, The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995  mathscinet  zmath
29. Ball J. A., “A lifting theorem for operator models of finite rank on multiply-connected domains”, J. Operator Theory, 1 (1979), 3–25  mathscinet  zmath
30. Ball J. A., Cohen N., “De Branges–Rovnyak operator models and systems theory: a survey”, Topics in Matrix and Operator Theory (Rotterdam, 1989), Oper. Theory Adv. Appl., 50, Birkhäuser, Basel, 1991, 93–136  mathscinet
31. Benamara N.-E., Nikolski N., “Resolvent tests for similarity to a normal operator”, Proc. London Math. Soc. (3), 78:3 (1999), 585–626  crossref  mathscinet  zmath
32. de Branges L., Rovnyak J., “Canonical models in quantum scattering theory”, Perturbation Theory and its Application in Quantum Mechanics (Madison, 1965), Wiley, New York, 1966, 295–392  mathscinet
33. Clark D. N., “On a similarity theory for rational Toeplitz operators”, J. Reine Angew. Math., 320 (1980), 6–31  mathscinet  zmath
34. Curtain R. F., Zwart H. J., An introduction to infinite-dimensional linear systems theory, Texts Appl. Math., 21, Springer-Verlag, New York, 1995  mathscinet  zmath
35. Datko R., “Extending a theorem of A. M. Lyapunov to Hubert space”, J. Math. Anal. Appl., 32 (1970), 610–616  crossref  mathscinet  zmath
36. Duren P. L., Theory of $H^p$-spaces, Pure Appl. Math., 38, Academic Press, New York–London, 1970  mathscinet
37. Dym H., “On Riccati equations and reproducing kernel spaces”, Recent Advances in Operator Theory (Groningen, 1998), Oper. Theory Adv. Appl., 124, Birkhäuser, Basel, 2001, 189–215  mathscinet  zmath
38. Foiaş C., Frazho A. E., The commutant lifting approach to interpolation problems, Oper. Theory Adv. Appl., 44, Birkhäuse, Basel, 1990  mathscinet  zmath
39. Fuhrmann P. A., Linear systems and operators in Hubert space, McGraw-Hill, New York, 1981  mathscinet  zmath
40. Fuhrmann P. A., A polynomial approach to linear algebra, Springer-Verlag, New York, 1996  mathscinet
41. Hasumi M., “Invariant subspace theorems for finite Riemann surfaces”, Canad. J. Math., 18 (1966), 240–255  mathscinet  zmath
42. Jacob B., Partington J. R., “The Weiss conjecture on admissibility of observation operators for contraction semigroups”, Integral Equations Operator Theory, 40 (2001), 231–243  crossref  mathscinet  zmath
43. Jacob B., Partington J. R., Pott S., “Conditions for admissibility of observation operators and boundedness of Hankel operators”, Integral Equations Oper. Theory, 47:3 (2003), 315–338  crossref  mathscinet  zmath
44. Kaashoek M. A., Verduyn Lunel S. M., “Characteristic matrices and spectral properties of evolutionary systems”, Trans. Amer. Math. Soc., 334 (1992), 479–517  crossref  mathscinet  zmath
45. Kalton N. J., Le Merdy C., “Solution of a problem of Feller concerning similarity”, J. Operator Theory, 47 (2002), 379–387  mathscinet  zmath
46. Komornik V., Exact controllability and stabilization. The multiplier method, Research in Applied Mathematics, 36, Masson, J. Wiley and Sons, Paris, Chichester, 1994  mathscinet  zmath
47. Kupin S., “Linear resolvent growth test for similarity of a weak contraction to a normal operator”, Ark. Mat., 39 (2001), 95–119  crossref  mathscinet  zmath
48. Kupin S., Treil S., “Linear resolvent growth of a weak contraction does not imply its similarity to a normal operator”, Illinois J. Math., 45:1 (2001), 229–242  mathscinet  zmath
49. Le Merdy C., “On dilation theoiy for $C^0$ – semigroups on Hubert space”, Indiana Univ. Math. J., 45:4 (1996), 945–959  mathscinet  zmath
50. Le Merdy C., “The similarity problem for bounded analytic semigroups on Hubert space”, Semigroup Forum, 56 (1998), 205–224  crossref  mathscinet  zmath
51. Le Merdy C., “The Weiss conjecture for bounded analytic semigroups”, J. Lond. Math. Soc., II. Ser., 67:3 (2003), 715–738  crossref  mathscinet  zmath
52. Le Merdy C., “A bounded compact semigroup on Hilbert space not similar to a contraction one”, Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel, 2000, 213–216  mathscinet  zmath
53. Le Merdy C., Similarities of $\omega$-accrefive operators, Prépubl. Lab. Math. Besançon no. 2002/07, Univ. France Comté, Centre Nat. Rech. Sci., Besancon, 2002
54. Lions J.-L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, V. 1, Rech. Math. Appl., 8, Masson, Paris, 1988  mathscinet; V. 2, 9
55. Livšic M. S., Kravitsky N., Markus A. S., Vinnikov V., Theory of commuting nonselfadjoint operators, Math. Appl., 332, Kluwer Acad. Publishers Group, Dordrecht, 1995  mathscinet  zmath
56. Verduyn Lunel S. M., Yakubovich D. V., “A functional model approach to linear neutral functional-differential equations”, Integral Equations Operator Theory, 27 (1997), 347–378  crossref  mathscinet  zmath
57. McIntosh A., “Operators which have an $H^\infty$ functional calculus”, Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986, 210–231  mathscinet  zmath
58. McCullough S., “Commutant lifting on a two holed domain”, Integral Equations Operator Theory, 35, no. 1, 1999, 65–84  mathscinet  zmath
59. Nikolski N. K., “Contrôlabilité à une renormalisation près et petits opérateurs de controle”, J. Math. Pures Appl. (9), 77:5 (1998), 439–479  mathscinet  zmath
60. Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Holomorphic Spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302  mathscinet  zmath
61. Nikolski N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz., Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002  mathscinet  zmath; Vol. 2. Model operators and systems, 93  zmath
62. Paulsen V. I., Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., 146, Longman, Wiley, New York, 1986  mathscinet  zmath
63. Pazy A., Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983  mathscinet  zmath
64. Pisier G., “A polynomially bounded operator on Hilbert space which is not similar to a contraction”, J. Amer. Math. Soc., 10:2 (1997), 351–369  crossref  mathscinet  zmath
65. Pritchard A. J., Salamon D., “The linear quadratic control problem for infinite-dimensional systems with unbounded input and output operators”, SIAM J. Control Optim., 25 (1987), 121–144  crossref  mathscinet  zmath
66. Staffans O., “Quadratic optimal control of well-posed linear systems”, SIAM J. Control Optim., 37 (1999), 131–164  crossref  mathscinet  zmath
67. Staffans O., Weiss G., “Transfer functions of regular linear systems. II. The system operator and the Lax–Phillips semigroup”, Trans. Amer. Math. Soc., 354:8 (2002), 3229–3262  crossref  mathscinet  zmath
68. Vasyunin V. I., Makarov N. G., “A model for noncontractions and stability of the continuous spectrum”, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 365–412  mathscinet
69. Voichick M., “Invariant subspaces on Riemann surfaces”, Canad. J. Math., 18 (1966), 399–403  mathscinet  zmath
70. Weiss G., “Admissible observation operators for linear semigroups”, Israel J. Math., 65 (1989), 17–43  crossref  mathscinet  zmath
71. Weiss G., “Admissibility of unbounded control operators”, SIAM J. Control Optim., 29 (1989), 527–545  crossref  mathscinet
72. Xia D., “On the kernels associated with a class of hyponormal operators”, Integral Equations Operator Theory, 6:3 (1983), 444–452  crossref  mathscinet  zmath
73. Yakubovich D. V., Spectral properties of smooth finite rank pertubations of a planar Lebesgue spectrum cyclic normal operator, Report no. 15 (1990/91), Inst. Mittag-Leffler, Stockholm
74. Yakubovich D. V., “Spectral properties of smooth perturbations of normal operators with planar Lebesgue spectrum”, Indiana Univ. Math. J., 42 (1993), 55–83  crossref  mathscinet  zmath
75. Yakubovich D. V., “Dual piecewise analytic bundle shift models of linear operators”, J. Funct. Anal., 136:2 (1996), 294–330  crossref  mathscinet  zmath
76. Yakubovich D. V., A similarity version of the Nagy–Foias model, duality and exact controllability, 17th International Conference on Operator Theory (Timisoara, 1998): Thesis of Reports
77. Yakubovich D. V., “Subnormal operators of finite type. II. Structure theorems”, Rev. Mat. Iberoamericana, 14:3 (1998), 623–681  mathscinet  zmath
78. Zuazua E., “Some problems and results on the controllability of partial differential equations”, European Congress of Mathematics, Vol. 2 (Budapest, 1996), Progr. Math., 169, Birkhäuser, Basel, 1998, 276–311  mathscinet  zmath
79. Tikhonov A. S., “Funktsionalnaya model i dvoistvennost spektralnykh komponent dlya operatorov s nepreryvnym spektrom na krivoi”, Algebra i analiz, 14:4 (2002), 158–195  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025