RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2003, том 15, выпуск 4, страницы 142–158 (Mi aa812)

Тепловое расширение оператора Бёрлинга и оценки его нормы
А. Л. Вольберг, Ф. Л. Назаров

Список литературы

1. Astala K., Iwaniec T., Saksman E., “Beltrami operators in the plane”, Duke Math. J., 107:1 (2001), 27–56  crossref  mathscinet  zmath
2. Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173 (1994), 37–60  crossref  mathscinet  zmath
3. Bañuelos R., Wang G., “Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms”, Duke Math. J., 80:3 (1995), 575–600  crossref  mathscinet
4. Bañuelos R., Mendez-Hernandez P., “Sharp inequalities Riesz transforms and space time Brownian motion”, Indiana Univ. Math. J. (to appear)
5. Боярский Б. В., “Гомеоморфные решения систем Бельтрами”, Докл. АН СССР, 102:4 (1955), 661–664  mathscinet
6. Боярский Б. В., “Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами”, Мат. сб., 43(85):4 (1957), 451–503  mathnet  mathscinet
7. Bojarski B. V., “Quasiconformal mappings and general structural properties of systems of nonlinear equations elliptic in the sense of Lavrent'ev”, Sympos. Math., 18, Academic Press, London, 1976, 485–499  mathscinet
8. Bojarski B. V., Iwaniec T., “Quasiconformal mappings and non-linear elliptic equations in two variables. I, II”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 473–484  mathscinet
9. Bañuelos R., Méndez-Hernández P., “Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps”, J. Funct. Anal., 176:2 (2000), 368–399  crossref  mathscinet
10. Burkholder D. L., “Explorations in martingale theory and its applications”, École d'Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., 1464, Springer, Berlin, 1991, 1–66  mathscinet
11. Burkholder D. L., “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Probab., 12 (1984), 647–702  crossref  mathscinet  zmath
12. Buckley S., “Estimates for operator norms on weighted spaces and reverse Jensen inequalities”, Trans. Amer. Math. Soc., 340:1 (1993), 253–272  crossref  mathscinet  zmath
13. Fefferman R., Kenig C., Pipher J., “The theory of weights and the Dirichlet problem for elliptic equations”, Ann. of Math. (2), 134:1 (1991), 65–124  crossref  mathscinet  zmath
14. Garcia-Cuerva J., Rubio de Francia J., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publishing Co., Amsterdam etc., 1985  mathscinet  zmath
15. Gehring F. W., “Open problems”, Proceedings of Roumanian–Finnish Seminar on Teichmuller Spaces and Quasiconformal Mappings, 1969, 306
16. Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277  crossref  mathscinet  zmath
17. Gehring F. W., “Topics in quasiconformal mappings”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, 62–80  mathscinet
18. Gehring F. W., Reich E., “Area distortion under quasiconformal mappings”, Ann. Acad. Sci. Fenn. Ser A I, 388 (1966), 1–15  mathscinet
19. Iwaniec T., “Extremal inequalities in Sobolev spaces and quasiconformal mappings”, Z. Anal. Anwendungen, 1 (1982), 1–16  mathscinet  zmath
20. Iwaniec T., “The best constant in a BMO-inequality for the Beurling–Ahlfors transform”, Michigan Math. J., 33 (1986), 387–394  crossref  mathscinet  zmath
21. Iwaniec T., “Hubert transform in the complex plane and area inequalities for certain quadratic differentials”, Michigan Math. J., 34 (1987), 407–434  crossref  mathscinet  zmath
22. Iwaniec T., “$L^p$-theory of quasiregular mappings”, Quasiconformal Space Mappings, Lecture Notes in Math., 1508, Springer, Berlin, 1992, 39–64  mathscinet
23. Iwaniec T., Martin G., “Quasiregular mappings in even dimensions”, Acta Math., 170:1 (1993), 29–81  crossref  mathscinet  zmath
24. Iwaniec T., Martin G., “Riesz transforms and related singular integrals”, J. Reine Angew. Math., 473 (1996), 25–57  mathscinet  zmath
25. Petermichl St., Wittwer J., A sharp weighted estimate on the norm of Hubert transform via invariant $A_2$ characteristic of the weight, Preprint, Michigan State Univ., 2000
26. Wittwer J., Thesis, Univ. Chicago, 2000
27. Lehto O., “Quasiconformal mappings and singular integrals”, Sympos. Math., 18, Academic Press, London, 1976, 429–453  mathscinet
28. Lehto O., Virtanen K., Quasiconformal mappings in the plane, Grundlehren Math. Wiss., 126, Springer-Verlag, New York etc., 1973  mathscinet  zmath
29. Nazarov F., Treil S., Volberg A., “The Bellman functions and two-weght inequalities for Haar multipliers”, J. Amer. Math. Soc., 12 (1999), 909–928  crossref  mathscinet  zmath
30. Petermichl S., Volberg A., “Heating of Ute Ahlfors-Beurling operator, weakly quasiregular maps on the plane are quasiregular”, Duke Math. J., 112:2 (2002), 281–305  crossref  mathscinet  zmath
31. Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monogr. Harmon. Anal. III, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993  mathscinet  zmath
32. Stroock D. W., Probability theory, an analytic view, Cambridge Univ. Press, Cambridge, 1993  mathscinet  zmath
33. A. Volberg, “Bellman approach to some problems in harmonic analysis”, Exp. No. 19, Seminaire Equations aux derivees partielles, Centre de mathematiques Laurent Schwartz, 2001–2002, 14


© МИАН, 2025