RUS  ENG
Full version
JOURNALS // Algebra i logika

Algebra Logika, 2003, Volume 42, Number 1, Pages 51–64 (Mi al17)

Groups Containing a Self-Centralizing Subgroup of Order 3
V. D. Mazurov

References

1. W. Feit, J. G. Thompson, “Finite groups which contain a self-centralizing subgroup of order 3”, Nagoya Math. J., 21 (1962), 185–197  mathscinet  zmath
2. S. I. Adyan, “Periodicheskie proizvedeniya grupp”, Tr. matem. in-ta im. V. A. Steklova, 142 (1976), 3–21  mathnet  mathscinet  zmath
3. S. I. Adian, “Classifications of periodic words and their application in group theory”, Burnside groups, Proc. Workshop Bielefeld, Lect. Notes Math., 806, 1980, 1–40  mathscinet  zmath
4. S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Doklady AN SSSR, 241:4 (1978), 745–748  mathnet  mathscinet  zmath
5. M. Schönert, et al., Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1993
6. V. P. Shunkov, “Ob odnom priznake neprostoty grupp”, Algebra i logika, 14:5 (1975), 491–522  mathnet  mathscinet
7. A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338  mathnet  mathscinet  zmath
8. W. Burnside, Theory of groups of finite order, 2nd ed., Dover Publ., New York, 1955  mathscinet  zmath
9. G. Higman, Odd characterizations of finite simple groups, Lect. Notes, Michigan University, Michigan, 1968


© Steklov Math. Inst. of RAS, 2025