RUS  ENG
Full version
JOURNALS // Algebra i logika

Algebra Logika, 2003, Volume 42, Number 1, Pages 65–93 (Mi al18)

Implicit Definability and Positive Logics
L. L. Maksimova

References

1. E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339  mathscinet
2. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102  crossref  mathscinet  zmath
3. L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Doklady AN SSSR, 237:6 (1977), 1281–1284  mathnet  mathscinet  zmath
4. L. L. Maksimova, “Proektivnye svoistva Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333  mathnet  mathscinet  zmath
5. G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25:4 (1960), 389–390
6. W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22 (1957), 269–285  crossref  mathscinet  zmath
7. I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136  mathscinet
8. Kh. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972  mathscinet
9. M. I. Verkhozina, “Promezhutochnye pozitivnye logiki”, Algoritmicheskie voprosy algebraicheskikh sistem, Irkutsk, 1978, 13–25
10. K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61  mathscinet
11. W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg, Braunschweig, Wiesbaden, 1979  zmath
12. S. Odintsov, “On $j$-algebras and $j$-frames”, Abstracts, Intern. Maltsev conference on Math. Logic, Novosibirsk, 1999, 101–102
13. L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681  mathnet  mathscinet  zmath
14. L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696  mathnet  mathscinet  zmath
15. E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112  crossref  mathscinet  zmath
16. L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586  mathnet  mathscinet  zmath
17. J. Czelakowski, “Logical matrices and the amalgamation property”, Stud. Log., 41:4 (1982), 329–341  crossref  mathscinet  zmath
18. I. Sain, “Beth's and Craig's Properties via Epimorphisms and Amalgamation in Algebraic Logic”, Algebraic Logic and Universal Algebra in Computer Science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin a. o., 1990, 209–226  mathscinet
19. J. Czelakowski, D. Pigozzi, “Amalgamation and Interpolation in Abstract Algebraic Logic”, Models, Algebras and Proofs, Selected papers of the $X$ Latin American Symposium on Mathematical Logic held in Bogota, 1999, Marcel Dekker Inc., New York, 187–265  mathscinet  zmath
20. L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025