|
|
|
References
|
|
|
1. |
Handbook of recursive mathematics, Stud. Logic
Found. Math., 138–139, ed. Yu. L. Ershov et al, Elsevier Science B.V., Amsterdam, 1998 |
2. |
R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Logic, Springer-Verlag, Heidelberg, 1987 |
3. |
W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge
University Press, Cambridge, 1993 |
4. |
S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 |
5. |
C. J. Ash, A. Nerode, “Intrinsically recursive relations”, Aspects of effective
algebra, Proc. conf. (1979), ed. J. N. Crossley, Monash Univ., Clayton, Aust., 1981, 26–41 |
6. |
M. Moses, “Relations intrinsically recursive in linear orders”, Z. Math. Logik
Grundlagen Math., 32:5 (1986), 467–472 |
7. |
V. S. Harizanov, Degree spectrum of a recursive relation on a recursive structure, PhD Thesis, University of Wisconsin, Madison, WI, 1987 |
8. |
J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 |
9. |
D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra
and computable dimension in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 |
10. |
V. S. Harizanov, “The possible Turing degree of the nonzero member in a two
element degree spectrum”, Ann. Pure Appl. Logic, 60:1 (1993), 1–30 |
11. |
D. R. Hirschfeldt, “Degree spectra of relations on computable structures in the
presence of $\Delta^0_2$ isomorphisms”, J. Symb. Log., 67:2 (2002), 697–720 |
12. |
M. Moses, “Recursive linear orderings with recursive successivities”, Ann. Pure
Appl. Logic, 27:3 (1984), 253–264 |
13. |
S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, R. I. Soare, “The d.r.e.
degrees are not dense”, Ann. Pure Appl. Logic, 55:2 (1991), 125–151 |
14. |
R. G. Downey, M. F. Moses, “Recursive linear orders with incomplete successivities”, Trans. Am. Math. Soc., 326 (1991), 653–668 |