RUS  ENG
Full version
JOURNALS // Algebra i logika

Algebra Logika, 2003, Volume 42, Number 2, Pages 182–193 (Mi al24)

Degree Spectra of Relations on Boolean Algebras
S. S. Goncharov, R. Downey, D. Hirschfeldt

References

1. Handbook of recursive mathematics, Stud. Logic Found. Math., 138–139, ed. Yu. L. Ershov et al, Elsevier Science B.V., Amsterdam, 1998
2. R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Logic, Springer-Verlag, Heidelberg, 1987  mathscinet
3. W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge University Press, Cambridge, 1993  mathscinet  zmath
4. S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996  mathscinet
5. C. J. Ash, A. Nerode, “Intrinsically recursive relations”, Aspects of effective algebra, Proc. conf. (1979), ed. J. N. Crossley, Monash Univ., Clayton, Aust., 1981, 26–41  mathscinet  zmath
6. M. Moses, “Relations intrinsically recursive in linear orders”, Z. Math. Logik Grundlagen Math., 32:5 (1986), 467–472  crossref  mathscinet  zmath
7. V. S. Harizanov, Degree spectrum of a recursive relation on a recursive structure, PhD Thesis, University of Wisconsin, Madison, WI, 1987
8. J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594  crossref  mathscinet  zmath
9. D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimension in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113  crossref  mathscinet  zmath
10. V. S. Harizanov, “The possible Turing degree of the nonzero member in a two element degree spectrum”, Ann. Pure Appl. Logic, 60:1 (1993), 1–30  crossref  mathscinet  zmath
11. D. R. Hirschfeldt, “Degree spectra of relations on computable structures in the presence of $\Delta^0_2$ isomorphisms”, J. Symb. Log., 67:2 (2002), 697–720  crossref  mathscinet  zmath
12. M. Moses, “Recursive linear orderings with recursive successivities”, Ann. Pure Appl. Logic, 27:3 (1984), 253–264  crossref  mathscinet  zmath
13. S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, R. I. Soare, “The d.r.e. degrees are not dense”, Ann. Pure Appl. Logic, 55:2 (1991), 125–151  crossref  mathscinet  zmath
14. R. G. Downey, M. F. Moses, “Recursive linear orders with incomplete successivities”, Trans. Am. Math. Soc., 326 (1991), 653–668  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2024