RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika

Avtomat. i Telemekh., 2017, Issue 2, Pages 36–49 (Mi at14682)

Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case
A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, F. A. Fedorenko

References

1. Gasnikov A. V., Lagunovskaya A. A., Usmanova I. N., Fedorenko F. A., “Bezgradientnye proks-metody s netochnym orakulom dlya negladkikh zadach vypukloi stokhasticheskoi optimizatsii na simplekse”, AiT, 2016, no. 10, 57–77  mathnet  elib
2. Lugosi G., Cesa-Bianchi N., Prediction, Learning and Games, Cambridge Univer. Press, N.Y., 2006  mathscinet  zmath
3. Agarwal A., Dekel O., Xiao L., “Optimal Algorithm for Online Convex Optimization with Multi-Point Bandit Feedback”, COLT, 2010, 28–40
4. Sridharan K., Learning from an Optimization Viewpoint, PhD Thesis, Toyota Technol. Institut, Chicago, 2011; arXiv: 1204.4145
5. Bubeck S., Introduction to Online Optimization, Lecture Notes, http://www.princeton.edu, Princeton Univer., 2011
6. Shalev-Shwartz S., “Online Learning and Online Convex Optimization”, Foundat. Trends Machin. Learning, 4:2 (2011), 107–194 http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf  crossref  zmath
7. Bubeck S., Cesa-Bianchi N., “Regret Analysis of Stochastic and Nonstochastic Multi-Armed Bandit Problems”, Foundat. Trends Machin. Learning, 5:1 (2012), 1–122 http://www.princeton.edu  crossref  mathscinet  zmath  elib
8. Rakhlin A., Sridharan K., Statistical Learning Theory and Sequential Prediction, E-print, http://stat.wharton.upenn.edu/~rakhlin/book_draft.pdf, 2014
9. Hazan E., Introduction to online convex optimization, E-print, http://ocobook.cs.princeton.edu/OCObook.pdf, 2015
10. Gasnikov A. V., Nesterov Yu. E., Spokoinyi V. G., “Ob effektivnosti odnogo metoda randomizatsii zerkalnogo spuska v zadachakh onlain optimizatsii”, ZhVM i MF, 55:4 (2015), 582–598, arXiv: 1410.3118  mathnet  crossref  mathscinet  zmath  elib
11. Duchi J. C., Jordan M. I., Wainwright M. J., Wibisono A., “Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations”, IEEE Transact. Inform., 61:5 (2015), 2788–2806 http://www.eecs.berkeley.edu/~wainwrig/Papers/DucZero15.pdf  crossref
12. Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, M., 1979  mathscinet
13. Flaxman A. D., Kalai A. T., McCahan H. B., “Online Convex Optimization in the Bandit Setting: Gradient Descent without a Gradient”, Proc. 16 Annual ACM-SIAM sympos Discret. Algorithm, 2005, 385–394 http://research.microsoft.com/en-us/um/people/adum/publications/2005-Online_Convex_Optimization_in_the_Bandit_Setting.pdf  mathscinet  zmath
14. Juditsky A., Nemirovski A., “First Order Methods for Nonsmooth Convex Large-Scale Optimization, I, II”, Optim. Machine Learning, eds. S. Sra, S. Nowozin, S. Wright, MIT Press, 2012
15. Gasnikov A. V., Dvurechenskii P. E., Nesterov Yu. E., “Stokhasticheskie gradientnye metody s netochnym orakulom”, Tr. MFTI, 8:1 (2016), 41–91  mathscinet; arXiv: 1411.4218
16. Nemirovski A., Lectures on Modern Convex Optimization Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2013 http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf
17. Agarwal A., Bartlett P. L., Ravikumar P., Wainwright M. J., “Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization”, IEEE Transact. Inform., 58 (2012), 3235–3249  crossref  mathscinet; arXiv: 1009.0571
18. Bubeck S., Eldan R., Multi-Scale Exploration of Convex Functions and Bandit Convex Optimization, E-print, http://research.microsoft.com/en-us/um/people/sebubeck/ConvexBandits.pdf, 2015
19. Allen-Zhu Z., Orecchia L., Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent, E-print, 2014, arXiv: 1407.1537
20. Nesterov Y., “Primal-Dual Subgradient Methods for Convex Problems”, Math. Program. Ser. B, 120:1 (2009), 261–283  crossref  mathscinet
21. Ledoux M., Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025