A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, F. A. Fedorenko
|
|
|
References
|
|
|
1. |
Gasnikov A. V., Lagunovskaya A. A., Usmanova I. N., Fedorenko F. A., “Bezgradientnye proks-metody s netochnym orakulom dlya negladkikh zadach vypukloi stokhasticheskoi optimizatsii na simplekse”, AiT, 2016, no. 10, 57–77 |
2. |
Lugosi G., Cesa-Bianchi N., Prediction, Learning and Games, Cambridge Univer. Press, N.Y., 2006 |
3. |
Agarwal A., Dekel O., Xiao L., “Optimal Algorithm for Online Convex Optimization with Multi-Point Bandit Feedback”, COLT, 2010, 28–40 |
4. |
Sridharan K., Learning from an Optimization Viewpoint, PhD Thesis, Toyota Technol. Institut, Chicago, 2011; arXiv: 1204.4145 |
5. |
Bubeck S., Introduction to Online Optimization, Lecture Notes, http://www.princeton.edu, Princeton Univer., 2011 |
6. |
Shalev-Shwartz S., “Online Learning and Online Convex Optimization”, Foundat. Trends Machin. Learning, 4:2 (2011), 107–194 http://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf |
7. |
Bubeck S., Cesa-Bianchi N., “Regret Analysis of Stochastic and Nonstochastic Multi-Armed Bandit Problems”, Foundat. Trends Machin. Learning, 5:1 (2012), 1–122 http://www.princeton.edu |
8. |
Rakhlin A., Sridharan K., Statistical Learning Theory and Sequential Prediction, E-print, http://stat.wharton.upenn.edu/~rakhlin/book_draft.pdf, 2014 |
9. |
Hazan E., Introduction to online convex optimization, E-print, http://ocobook.cs.princeton.edu/OCObook.pdf, 2015 |
10. |
Gasnikov A. V., Nesterov Yu. E., Spokoinyi V. G., “Ob effektivnosti odnogo metoda randomizatsii zerkalnogo spuska v zadachakh onlain optimizatsii”, ZhVM i MF, 55:4 (2015), 582–598, arXiv: 1410.3118 |
11. |
Duchi J. C., Jordan M. I., Wainwright M. J., Wibisono A., “Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations”, IEEE Transact. Inform., 61:5 (2015), 2788–2806 http://www.eecs.berkeley.edu/~wainwrig/Papers/DucZero15.pdf |
12. |
Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, M., 1979 |
13. |
Flaxman A. D., Kalai A. T., McCahan H. B., “Online Convex Optimization in the Bandit Setting: Gradient Descent without a Gradient”, Proc. 16 Annual ACM-SIAM sympos Discret. Algorithm, 2005, 385–394 http://research.microsoft.com/en-us/um/people/adum/publications/2005-Online_Convex_Optimization_in_the_Bandit_Setting.pdf |
14. |
Juditsky A., Nemirovski A., “First Order Methods for Nonsmooth Convex Large-Scale Optimization, I, II”, Optim. Machine Learning, eds. S. Sra, S. Nowozin, S. Wright, MIT Press, 2012 |
15. |
Gasnikov A. V., Dvurechenskii P. E., Nesterov Yu. E., “Stokhasticheskie gradientnye metody s netochnym orakulom”, Tr. MFTI, 8:1 (2016), 41–91 ; arXiv: 1411.4218 |
16. |
Nemirovski A., Lectures on Modern Convex Optimization Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2013 http://www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf |
17. |
Agarwal A., Bartlett P. L., Ravikumar P., Wainwright M. J., “Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization”, IEEE Transact. Inform., 58 (2012), 3235–3249 ; arXiv: 1009.0571 |
18. |
Bubeck S., Eldan R., Multi-Scale Exploration of Convex Functions and Bandit Convex Optimization, E-print, http://research.microsoft.com/en-us/um/people/sebubeck/ConvexBandits.pdf, 2015 |
19. |
Allen-Zhu Z., Orecchia L., Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent, E-print, 2014, arXiv: 1407.1537 |
20. |
Nesterov Y., “Primal-Dual Subgradient Methods for Convex Problems”, Math. Program. Ser. B, 120:1 (2009), 261–283 |
21. |
Ledoux M., Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001 |