RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika

Avtomat. i Telemekh., 2022, Issue 5, Pages 76–86 (Mi at15956)

Evaluation of statistical relationship of random variables via mutual information
V. V. Tsurko, A. I. Mikhalskii

References

1. Aivazyan S. A., Enyukov I. S., Meshalkin L. D., Issledovanie zavisimostei, Finansy i statistika, M., 1988  mathscinet
2. Pogozhev I. B., Primenenie matematicheskikh modelei zabolevanii v klinicheskoi praktike, Nauka, M., 1988  mathscinet
3. Gallager R., Teoriya informatsii i nadezhnaya svyaz, Sov. radio, M., 1974
4. Suzuki T., Sugiyama M., Kanamori T., Sese J., “Mutual information estimation reveals global associations between stimuli and biological processes”, BMC Bioinformatics, 10, Suppl. 1 (2009), S52  crossref
5. Vergara J. R., Estevez P. A., “A review of feature selection methods based on mutual information”, Neural Comput & Applic., 24 (2014), 175–186  crossref
6. Vapnik V., Izmailov R., “Statistical inference problems and their rigorous solutions”, Statistical Learning and Data Sciences, SLDS Lecture Notes in Computer Science, 9047, eds. Gammerman A., Vovk V., Papadopoulos H., 2015, 33–75  crossref  mathscinet
7. Gine E., Nickl R., Mathematical Foundations of Infinite-Dimensional Statistical Model, Cambridge Academ., 2015  mathscinet
8. Manton J. H., Amblard P.-O., “A Primer on Reproducing Kernel Hilbert Spaces”, Foundations and Trends in Signal Processing, 8:1 (2014), 1–26  mathscinet
9. Scholkopf B., Herbrich R., Smola A. J., “A generalized representer theorem”, Proceedings of the 14th Annual Conference on Computational Learning Theory and 5th European Conference on Computational Learning Theory, COLT'01/EuroCOLT'01, 2001, 416–426  mathscinet  zmath
10. Aizerman M. A., Braverman E. M., Rozonoer L. I., Metod potentsialnykh funktsii v teorii obucheniya mashin, Nauka, M., 1970
11. Mikhalskii A. I., Petrov I. V., Tsurko V. V., et al., “Application of mutual information estimation for predicting the structural stability of pentapeptides”, Russ. J. Numer. Anal M., 35:5 (2020), 263–271  crossref  mathscinet  zmath
12. Nekrasov A., “Entropy of Protein Sequences: An Integral Approach”, J. Biomolec. Structur. Dynam., 20 (2002), 87–92  crossref
13. Nekrasov A., Alekseeva L., Pogosyan R., et al., “A minimum set of stable blocks for rational design of polypeptide chains”, Biochimie, 160 (2019), 88–92  crossref
14. Breiman L., “Random Forests”, Machin. Learning J., 45:1 (2001), 5–32  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025