RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika

Avtomat. i Telemekh., 2022, Issue 6, Pages 53–71 (Mi at15976)

Simultaneous learning and planning in a hierarchical control system for a cognitive agent
A. I. Panov

References

1. Trafton G.J., et al., “ACT-R/E: An Embodied Cognitive Architecture for Human-Robot Interaction”, J. Human-Robot Interaction, 2:1 (2013), 30–54  crossref
2. Goertzel B., “From Abstract Agents Models to Real-World AGI Architectures: Bridging the Gap”, Lecture Notes in Computer Science, 10414, eds. Everitt T., Goertzel B., Potapov A., Springer International Publishing, Cham, 2017, 3–12  crossref
3. Wu J., et al., “Track to Detect and Segment: An Online Multi-Object Tracker”, 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, 2021, 12347–12356
4. Likhachev M., Ferguson D., “Planning long dynamically feasible maneuvers for autonomous vehicles”, Int. J. Robotics Research, 28:8 (2009), 933–945  crossref
5. Aitygulov E., Kiselev G., Panov A.I., “Task and Spatial Planning by the Cognitive Agent with Human-like Knowledge Representation”, Interactive Collaborative Robotics, ICR Lecture Notes in Computer Science, 11097, eds. Ronzhin A., Rigoll G., Meshcheryakov R., Springer, 2018, 1–12  crossref
6. Satton R.S., Barto E.G., Obuchenie s podkrepleniem, Izd. 2-e, BINOM. Laboratoriya znanii, M., 2011
7. Moerland T.M., Broekens J., Jonker C.M., Model-based Reinforcement Learning: A Survey, 2020, 421–429  mathscinet
8. Makarov D.A., Panov A.I., Yakovlev K.S., “Arkhitektura mnogourovnevoi intellektualnoi sistemy upravleniya bespilotnymi letatelnymi apparatami”, Iskusstvennyi intellekt i prinyatie reshenii, 2015, no. 3, 18–33
9. Yakovlev K., et al., “Combining Safe Interval Path Planning and Constrained Path Following Control: Preliminary Results”, Interactive Collaborative Robotics, ICR Lecture Notes in Computer Science, 11659, 2019, 310–319  crossref
10. Staroverov A., et al., “Real-Time Object Navigation with Deep Neural Networks and Hierarchical Reinforcement Learning”, IEEE Access, 8 (2020), 195608–195621  crossref
11. Kiselev G.A., “Intellektualnaya sistema planirovaniya povedeniya koalitsii robototekhnicheskikh agentov s STRL arkhitekturoi”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2020, no. 2, 21–37
12. Pack L., Littman M.L., Cassandra A.R., “Planning and acting in partially observable stochastic domains”, Artificial Intelligence, 101 (1998), 99–134  crossref  mathscinet  zmath
13. Bacon P.-L., Harb J., Precup D., “The Option-Critic Architecture”, Proc. of the AAAI Conf. on Artificial Intelligence, 31 (2017)
14. Keramati R., et al., Strategic Object Oriented Reinforcement Learning, 2018  zmath
15. Watters N., et al., COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration, 2019
16. Hafner D., et al., “Dream to Control: Learning Behaviors by Latent Imagination”, Int. Conf. on Learning Representations, 2020  zmath
17. Jamal M., Panov A., “Adaptive Maneuver Planning for Autonomous Vehicles Using Behavior Tree on Apollo Platform”, Artificial Intelligence XXXVIII, SGAI Lecture Notes in Computer Science, 13101, eds. Bramer M., Ellis R., 2021, 327–340  crossref


© Steklov Math. Inst. of RAS, 2024