RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Contributions to Game Theory and Management

Contributions to Game Theory and Management, 2012, òîì 5, ñòðàíèöû 83–96 (Mi cgtm149)

Differential Game Model with Two Pursuers and One Evader
Sergey A. Ganebny, Sergey S. Kumkov, Stéphane Le Ménec, Valerii S. Patsko

References

1. Blagodatskih A. I., Petrov N. N., Conflict Interaction Controlled Objects Groups, Udmurt State University, Izhevsk, 2009 (in Russian)
2. Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Set-valued numerical analysis for optimal control and differential games”, Stochastic and Differential Games — Theory and Numerical Methods, Annals of the International Society of Dynamic Games, 4, eds. M. Bardi, T. E. Raghavan, T. Parthasarathy, Birkhauser, Boston, 1999, 177–247  mathscinet  zmath
3. Chikrii A. A., Conflict-Controlled Processes, Mathematics and its Applications, 405, Kluwer Academic Publishers Group, Dordrecht, 1997  mathscinet  zmath
4. Cristiani E., Falcone M., “Fully-Discrete Schemes for the Value Function of Pursuit-Evasion Games with State Constraints”, Advances in Dynamic Games and Applications, Annals of the International Society of Dynamic Games, 10, eds. P. Bernhard, V. Gaitsgory, O. Pourtallier, Birkhauser, Boston, 2009, 177–206  mathscinet  zmath
5. Ganebny S. A., Kumkov S. S., Le Menec S., Patsko V S., “Numerical Study of a Linear Differential Game with Two Pursuers and One Evader”, Contributions to Game Theory and Management, 4, eds. L. A. Petrosyan, N. A. Zenkevich, St. Petersburg University, St. Petersburg, 2011, 154–171  mathnet  mathscinet  zmath
6. Grigorenko N. L., Mathematical Methods for Control of Several Dynamic Objects, Moscow State Univ., M., 1990 (in Russian)
7. Isaacs R., Differential Games, John Wiley and Sons, New York, 1965  mathscinet  zmath
8. Krasovskii N. N., Subbotin A. I., Positional Differential Games, Nauka, M., 1974 (in Russian)  mathscinet  zmath
9. Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988  mathscinet
10. Le Ménec S., “Linear differential game with two pursuers and one evader”, Advances in Dynamic Games. Theory, Applications, and Numerical Methods for Differential and Stochastic Games, Annals of the International Society of Dynamic Games, 11, eds. M. Breton, K. Szajowski, Birkhauser, Boston, 2011, 209–226  crossref  mathscinet  zmath
11. Mitchell I., Application of Level Set Methods to Control and Reachability Problems in Continuous and Hybrid Systems, Ph. D. Thesis, Stanford University, 2002  mathscinet  zmath
12. Petrosjan L. A., Differential Games of Pursuit, Leningrad University, Leningrad, 1977 (in Russian)  mathscinet  zmath
13. Rikhsiev B. B., Differential games with simple moves, Fan, Tashkent, 1989 (in Russian)  mathscinet  zmath
14. Shima T., Shinar J., “Time-Varying Linear Pursuit-Evasion Game Models with Bounded Controls”, Journal of Guidance, Control and Dynamics, 25:3 (2002), 425–432  crossref  mathscinet  adsnasa  isi
15. Shinar J., Gutman S., “Three-Dimensional Optimal Pursuit and Evasion with Bounded Control”, IEEE Transactions on Automatic Control, AC-25:3 (1980), 492–496  crossref  mathscinet  zmath
16. Shinar J., Shima T., “Non-orthodox Guidance Law Development Approach for Intercepting Maneuvering Targets”, Journal of Guidance, Control, and Dynamics, 25:4 (2002), 658–666  crossref  adsnasa  isi
17. Taras'ev A. M., Tokmantsev T. B., Uspenskii A. A., Ushakov V. N., “On procedures for constructing solutions in differential games on a finite interval of time”, Journal of Mathematical Sciences, 139:5 (2006), 6954–6975  crossref  mathscinet
18. Ushakov V. N., “Construction of solutions in differential games of pursuit-evasion”, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, 2, Nicholas Copernicus University, Torun, 1998, 269–281  zmath


© ÌÈÀÍ, 2025