RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Contributions to Game Theory and Management

Contributions to Game Theory and Management, 2011, òîì 4, ñòðàíèöû 154–171 (Mi cgtm185)

Numerical Study of a Linear Differential Game with Two Pursuers and One Evader
Sergey S. Ganebny, Sergey S. Kumkov, Stéphane Le Ménec, Valerii S. Patsko

References

1. Abramyantz T. G., Maslov E. P., “A differential game of pursuit of a group target”, Izv. Akad. Nauk Teor. Sist. Upr., 2004, no. 5, 16–22 (in Russian)  mathscinet
2. Blagodatskih A. I., Petrov N. N., Conflict Interaction Controlled Objects Groups, Udmurt State University, Izhevsk, 2009 (in Russian)
3. Botkin N. D., Patsko V. S., “Universal strategy in a differential game with fixed terminal time”, Problems of Control and Inform. Theory, 11 (1983), 419–432  mathscinet
4. Chikrii A. A., Conflict-Controlled Processes, Mathematics and its Applications, 405, Kluwer Academic Publishers Group, Dordrecht, 1997  mathscinet  zmath
5. Grigorenko N. L., “The problem of pursuit by several objects”, Differential games — developments in modelling and computation (Espoo, 1990), Lecture Notes in Control and Inform. Sci., 156, Springer, Berlin, 1991, 71–80  crossref  mathscinet  zmath
6. Hagedorn P., Breakwell J. V., “A differential game with two pursuers and one evader”, Journal of Optimization Theory and Applications, 18:2 (1976), 15–29  crossref  mathscinet  zmath
7. Isaacs R., Differential Games, Wiley & Sons, New York, 1965  mathscinet  zmath
8. Krasovskii N. N., Krasovskii A. N., “A differential game for the minimax of a positional functional”, Adv. Nonlin. Dynamics. and Control: A report from Russia, Birkhauser, Berlin, 1993, 41–73  crossref  mathscinet  zmath
9. Krasovskii N. N., Subbotin A. I., Positional Differential Games, Nauka, Moscow, 1974 (in Russian)  mathscinet  zmath
10. Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988  mathscinet
11. Levchenkov A. Y., Pashkov A. G., “Differential game of optimal approach of two inertial pursuers to a noninertial evader”, Journal of Optimization Theory and Applications, 65 (1990), 501–518  crossref  mathscinet  zmath  isi
12. Le Ménec S., “Linear differential game with two pursuers and one evader”, Advances in Dynamic Games: Theory, Applications, and Numerical Methods for Differential and Stochastic Games, Annals of the International Society of Dynamic Games, 11, eds. M. Breton, K. Szajowski, Birkhauser, Boston, 2011, 209–226  crossref  mathscinet  zmath
13. Patsko V., “Switching surfaces in linear differential games”, Journal of Mathematical Sciences, 139:5 (2006), 6909–6953  crossref  mathscinet  zmath
14. Pschenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 3 (1976), 145–146 (in Russian)  mathscinet
15. Shima T., Shinar J., “Time varying linear pursuit-evasion game models with bounded controls”, Journal of Guidance, Control and Dynamics, 25:3 (2002), 425–432  crossref  mathscinet  adsnasa  isi
16. Shinar J., Shima T., “Non-orthodox guidance law development approach for the interception of maneuvering anti-surface missiles”, Journal of Guidance, Control, and Dynamics, 25:4 (2002), 658–666  crossref  adsnasa  isi
17. Stipanovic D. M., Melikyan A. A., Hovakimyan N., “Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations”, Advances in Dynamic Games and Applications, Annals of the International Society of Dynamic Games, 11, eds. P. Bernhard, V. Gaitsgory, O. Pourtallier, Springer, Berlin, 2009, 133–145  mathscinet
18. Zarkh M. A., “Unversal strategy of the second player in a linear differential game”, Prikl. Math. Mekh., 54:3 (1990), 395–400 (in Russian)  mathscinet  zmath


© ÌÈÀÍ, 2025