|
|
|
References
|
|
|
1. |
Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Mathematische Annalen, 77 (1916), 313–352 |
2. |
Baker A., Schmidt W. M., “Diophantine approximation and {H}ausdorff dimension”, Proc. London Math. Soc. (3), 21 (1970), 1–11 |
3. |
Khintchine A., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125 |
4. |
Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 |
5. |
Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 |
6. |
Beresnevich V. V., “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungarica, 94:1–2 (2002), 99–130 |
7. |
Bernik V. I., Kleinbock D., Margulis G. A., “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Math. Res. Notices, 2001, no. 9, 453–486 |
8. |
Beresnevich V. V., Bernik V. I., Kleinbock D., Margulis G. A., “Metric Diophantine approximation: The Khintchine-Groshev theorem for nondegenerate manifolds”, Mosc. Math. J., 2:2 (2002), 203–225 |
9. |
Bernik V. I., Vasilyev D. V., “A Khinchine-type theorem for integer-valued polynomials of a complex variable”, Proc. Inst. Math., 3 (1999), 10–20 |
10. |
Beresnevich V. V., Bernik V. I., Kovalevskaya E. I., “Metric theorems on the approximation of $p$-adic numbers”, J. Number Theory, 111:1 (2005), 33–56 |
11. |
Bernik V. I., Budarina N. V., Dickinson D., “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 |
12. |
Bernik V. I., Budarina N. V., Dickinson D., “Simultaneous Diophantine approximation in the real, complex, and $p$-adic fields”, Math. Proc. Cambridge Phil. Soc., 149:2 (2010), 193–216 |
13. |
Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley, New York, 1974 |
14. |
Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1999 |
15. |
Bugeaud Y., Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2004 |
16. |
Bernik V. I., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 |
17. |
Kaliada D., “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, 56:3 (2012), 28–33 |
18. |
Bernik V. I., Götze F., Gusakova A. G., “On points with algebraically conjugate coordinates close to smooth curves”, Moscow J. of Comb. and Numb. Theor., 6:2–3 (2016), 57–100 |
19. |
Bernik V. I., “Application of the {H}ausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 |
20. |
Götze F., Gusakova A., “On algebraic integers in short intervals & near smooth curves”, Acta Arith., 60:2 (2016), 219–253 |
21. |
Sprindzhuk V. G., “A proof of Mahler's conjecture on the measure of the set of $S$-numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 379–436 |
22. |
Sprindzhuk V. G., Mahler's Problem in Metric Number Theory, Nauka i Tehnika, Minsk, 1967 |
23. |
Cassels J. W. S., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, Cambridge, 1957 |
24. |
Budarina N. V., Götze F., “Distance between Conjugate Algebraic Numbers in Clusters”, Mat. Zametki, 94:5 (2013), 780–783 |