RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik

Chebyshevskii Sb., 2017, Volume 18, Issue 4, Pages 116–127 (Mi cheb601)

Upper and lower estimates of the number of algebraic points in short intervals
V. I. Bernik, A. G. Gusakova, A. S. Kudin

References

1. Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Mathematische Annalen, 77 (1916), 313–352  crossref  mathscinet  zmath
2. Baker A., Schmidt W. M., “Diophantine approximation and {H}ausdorff dimension”, Proc. London Math. Soc. (3), 21 (1970), 1–11  crossref  mathscinet  zmath
3. Khintchine A., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125  crossref  mathscinet  zmath
4. Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28  crossref  mathscinet  zmath
5. Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112  crossref  mathscinet
6. Beresnevich V. V., “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungarica, 94:1–2 (2002), 99–130  crossref  mathscinet  zmath
7. Bernik V. I., Kleinbock D., Margulis G. A., “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Math. Res. Notices, 2001, no. 9, 453–486  crossref  mathscinet  zmath
8. Beresnevich V. V., Bernik V. I., Kleinbock D., Margulis G. A., “Metric Diophantine approximation: The Khintchine-Groshev theorem for nondegenerate manifolds”, Mosc. Math. J., 2:2 (2002), 203–225  mathnet  crossref  mathscinet  zmath
9. Bernik V. I., Vasilyev D. V., “A Khinchine-type theorem for integer-valued polynomials of a complex variable”, Proc. Inst. Math., 3 (1999), 10–20  mathscinet  zmath
10. Beresnevich V. V., Bernik V. I., Kovalevskaya E. I., “Metric theorems on the approximation of $p$-adic numbers”, J. Number Theory, 111:1 (2005), 33–56  crossref  mathscinet  zmath  elib
11. Bernik V. I., Budarina N. V., Dickinson D., “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173  crossref  mathscinet  zmath  elib
12. Bernik V. I., Budarina N. V., Dickinson D., “Simultaneous Diophantine approximation in the real, complex, and $p$-adic fields”, Math. Proc. Cambridge Phil. Soc., 149:2 (2010), 193–216  crossref  mathscinet  zmath  elib
13. Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley, New York, 1974  mathscinet  zmath
14. Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1999  mathscinet  zmath
15. Bugeaud Y., Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2004  mathscinet  zmath
16. Bernik V. I., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39  mathnet  crossref  mathscinet  zmath  adsnasa
17. Kaliada D., “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, 56:3 (2012), 28–33  mathscinet
18. Bernik V. I., Götze F., Gusakova A. G., “On points with algebraically conjugate coordinates close to smooth curves”, Moscow J. of Comb. and Numb. Theor., 6:2–3 (2016), 57–100  mathscinet
19. Bernik V. I., “Application of the {H}ausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253  crossref  mathscinet  zmath  adsnasa
20. Götze F., Gusakova A., “On algebraic integers in short intervals & near smooth curves”, Acta Arith., 60:2 (2016), 219–253  mathscinet
21. Sprindzhuk V. G., “A proof of Mahler's conjecture on the measure of the set of $S$-numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 379–436  mathnet  mathscinet  zmath
22. Sprindzhuk V. G., Mahler's Problem in Metric Number Theory, Nauka i Tehnika, Minsk, 1967  mathscinet  zmath
23. Cassels J. W. S., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, Cambridge, 1957  mathscinet  zmath
24. Budarina N. V., Götze F., “Distance between Conjugate Algebraic Numbers in Clusters”, Mat. Zametki, 94:5 (2013), 780–783  mathnet  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025