|
|
|
References
|
|
|
1. |
Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981 |
2. |
Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 |
3. |
Billingsley P., Convergence of Probability Measures, Willey, New York, 1968 |
4. |
Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 |
5. |
Karatsuba A. A., Voronin S. M., The Riemann Zeta-Function, de Gruyter, New York, 1992 |
6. |
Lang S., Algebra, Addison-Wesley, Reading, Mass., 1967 |
7. |
Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 |
8. |
Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 |
9. |
Laurinčikas A., Matsumoto K., “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 |
10. |
Mergelyan S. N., “Uniform approximations to functions of complex variable”, Usp. Mat. Nauk (N.S.), 7 (1952), 31–122 (in Russian) |
11. |
Steuding J., “Value Distribution of $L$-Functions”, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg–New York, 2007 |
12. |
Titchmarsh E. C., The Theory of Functions, Oxford University Press, Oxford, 1939 |
13. |
Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (in Russian) |
14. |
Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) |
15. |
Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., 20, 1960 |