RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik

Chebyshevskii Sb., 2011, Volume 12, Issue 1, Pages 124–139 (Mi cheb65)

On joint universality of Dirichlet $L$-functions
A. Laurinčikas

References

1. Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
2. Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334  crossref  mathscinet  zmath  isi
3. Billingsley P., Convergence of Probability Measures, Willey, New York, 1968  mathscinet  zmath
4. Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979  mathscinet
5. Karatsuba A. A., Voronin S. M., The Riemann Zeta-Function, de Gruyter, New York, 1992  mathscinet  zmath
6. Lang S., Algebra, Addison-Wesley, Reading, Mass., 1967  mathscinet  zmath
7. Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996  mathscinet
8. Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227  mathscinet  zmath  isi
9. Laurinčikas A., Matsumoto K., “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75  mathscinet  zmath
10. Mergelyan S. N., “Uniform approximations to functions of complex variable”, Usp. Mat. Nauk (N.S.), 7 (1952), 31–122 (in Russian)  mathnet  mathscinet  zmath
11. Steuding J., “Value Distribution of $L$-Functions”, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg–New York, 2007  mathscinet  zmath
12. Titchmarsh E. C., The Theory of Functions, Oxford University Press, Oxford, 1939
13. Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (in Russian)  mathnet  mathscinet  zmath
14. Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian)  mathscinet  zmath
15. Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., 20, 1960  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025