|
|
|
Список литературы
|
|
|
1. |
Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 |
2. |
Biringer I., Schmidt B., “The three-gap theorem and Riemann geometry”, Geometriae Dedicata, 136:1 (2008), 175–190 |
3. |
Bleher P., Homma Y., Ji L., Roeder R., Shen J., “Nearest neighbor distances on a circle: multidimensional case”, J. Stat. Phys., 146 (2012), 446–465 |
4. |
Chevallier N., “Geometrie des suites de Kronecker”, Manuscripta Math., 94 (1997), 231–241 |
5. |
Chevallier N., “Cyclic groups and the three distance theorem”, Canad. J. Math., 59 (2007), 503–552 |
6. |
Chung F. R. K., Graham R. L., “On the set of distances determined by union of arithmetic progression”, Ars. Combinatoria, 1:1 (1976), 57–76 |
7. |
Floreik K., “Une remarque sur la repartition des nombres $m\xi\bmod 1$”, Coll. Math. Wroclaw, v. 2, 1951, 323–324 |
8. |
Fried E., Sos V. T., “A generalization of the three-distance theorem for groups”, Algebra Universalis, 29:1 (1992), 136–149 |
9. |
Geelen A. S., Simpson R. J., “A two dimensional Steinhaus theorem”, Australas. J. Combin., 8 (1993), 136–197 |
10. |
Haynes A., Koivusalo H., Walton J., Sadun L., “Gaps problems and frequencies of patches in cut and project sets”, Math. Proc. Camb. Philos. Soc., 161 (2016), 65–85 |
11. |
Marklof J., “Strömbergsson The Three Gap Theorem and the Space of Lattices”, American Mathematical Monthly, 124:8 (2017), 741–745 |
12. |
Pytheas Fogg N., Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 |
13. |
Liang F. M., “A short proof of the 3d distance theorem”, Discrete Math., 28:3 (1979), 325–326 |
14. |
Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 |
15. |
Ravenstein T. V. The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 |
16. |
Slater N., “Gaps and steps for the sequence $n\theta \mod 1$”, Proc. Camb. Phil. Soc., 63 (1967), 1115–1123 |
17. |
Sós V. T., “On the distribution mod 1 of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), 127–134 |
18. |
Suranyi J., “Uber die Anordnung der Vielfachen einer reellen Zahl mod 1”, Ann. Univ. Sci. Budapest Eotvos Sect. Math., 1 (1958), 107–111 |
19. |
Świerczkowski S., “On successive settings of an arc on the circumference of a circle”, Fund. Math., 46 (1958), 187–189 |
20. |
Vâjâitu M., Zaharescu A., “Distinct Gaps between Fractional Parts of Sequences”, Proceedings of the American Mathematical Society, 130:12 (2002), 3447–3452 |
21. |
Vijay S., “Eleven Euclidean distances are enough”, J. Number Theory, 128 (2008), 1655–1661 |
22. |
Журавлев В. Г., “Делящиеся разбиения тора и множества ограниченного остатка”, Аналитическая теория чисел и теория функций. 30, Записки научных семинаров ПОМИ, 440, 2015, 99–122 [Zhuravlev V. G., “Dividing Toric Tilings and Bounded Remainder Sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 30, Zapiski nauchnyh seminarov POMI, 440, 2015, 99–122] |
23. |
Журавлев В. Г., “Одномерные разбиения Фибоначчи”, Изв. РАН. Сер. матем., 71:2 (2007), 89–122 [Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izv. RAN. Ser. matem., 71:2 (2007), 89–122] |
24. |
Журавлев В. Г., “Перекладывающиеся торические развертки и множества ограниченного остатка”, Аналитическая теория чисел и теория функций. 26, Записки научных семинаров ПОМИ, 392, 2011, 95–145 [Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 26, Zapiski nauchnyh seminarov POMI, 392, 2011, 95–145] |
25. |
Кузнецова Д. В., Шутов А. В., “Перекладывающиеся разбиения тора, подстановка Рози и множества ограниченного остатка”, Математические заметки, 98:6 (2015), 878–897 [Kuznetsova D. V., Shutov A. V., “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets”, Matematicheskiye zametki, 98:6 (2015), 878–897] |
26. |
Красильщиков В. В., Шутов А. В., Одномерные квазипериодические разбиения и их приложения, ВФ РУК, Владимир, 2011 [Krasilshchikov V. V., Shutov A., One-dimensional quasi-periodic tilings and their applications, VF RUK, Vladimir, 2011] |