|
|
|
References
|
|
|
1. |
R. Bettin, Guidance in Space, Mashinostroenie, Moscow, 1966 |
2. |
R. Gabasov, F. M. Kirillova, “Methods of optimal control”, Totals Sci. Tech. Contemp. Probl. Math., 6, 1976, 133–259 |
3. |
M. K. Gavurin, “Nonlinear functional equations and continuous analogs of iterative methods”, Bull. Higher Edu. Inst. Ser. Math., 1958, no. 5, 18–31 |
4. |
E. M. Galeev, M. I. Zelikin, S. V. Konyagin, G. G. Magaril-Il'yaev, N. P. Osmolovskiy, V. Yu. Protasov, V. M. Tikhomirov, A. V. Fursikov, Optimal Control, MTsNMO, Moscow, 2008 |
5. |
I. S. Grigor'ev, K. G. Grigor'ev, “On application of solutions of spacecraft trajectory optimization problems in impulse setting to optimal control problems for a limited thrust spacecraft. I”, Space Investig., 45:4 (2007), 358–366 |
6. |
I. S. Grigor'ev, K. G. Grigor'ev, “On application of solutions of spacecraft trajectory optimization problems in impulse setting to optimal control problems for a limited thrust spacecraft. II”, Space Investig., 45:6 (2007), 553–563 |
7. |
I. S. Grigor'ev, K. G. Grigor'ev, Yu. D. Petrikova, “On fastest maneuvers of a spacecraft with large limited thrust jet in a gravitational field in vacuum”, Space Investig., 38:3 (2000), 171–192 |
8. |
K. G. Grigor'ev, “On maneuvers of a spacecraft with minimal mass consumption in a limited time”, Space Investig., 32:2 (1994), 45–60 |
9. |
G. L. Grodzovskiy, Yu. N. Ivanov, V. V. Tokarev, Mechanics of Space Flight with Low Thrust, Nauka, Moscow, 1969 |
10. |
D. F. Davidenko, “On one new method of numerical solution for systems of nonlinear equations”, Rep. Acad. Sci. USSR, 88:4 (1953), 601–602 |
11. |
Yu. A. Zakharov, Designing Interorbital Spacecraft. Choosing Trajectories and Design Parameters, Mashinostroenie, Moscow, 1984 |
12. |
A. V. Ivanyukhin, V. G. Petukhov, “Thrust minimization problem and its applications”, Space Investig., 53:4 (2015), 320–331 |
13. |
M. A. Krasnosel'skiy, G. M. Vaynikko, P. P. Zabreyko, Ya. B. Rutitskiy, V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka, Moscow, 1969 |
14. |
E. B. Lee, L. Markus, Foundations of Optimal Control Theory, Nauka, Moscow, 1972 |
15. |
D. F. Lawden, Optimal Trajectories for Space Navigation, Mir, Moscow, 1966 |
16. |
J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Mir, Moscow, 1975 |
17. |
V. G. Petukhov, “Optimization of interplanetary trajectories of spacecraft with perfectly regulated jet by means of continuation method”, Space Investig., 46:3 (2008), 224–237 |
18. |
V. G. Petukhov, “Continuation method for optimization of interplanetary trajectories with low thrust”, Space Investig., 50:3 (2012), 258–270 |
19. |
L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical Theory of Optimal Processes, Nauka, Moscow, 1969 |
20. |
A. A. Sukhanov, Astrodynamics, IKI RAN, Moscow, 2010 |
21. |
A. F. Filippov, “On some problems of optimal regulation theory”, Bull. MSU, 2 (1959), 25–32 |
22. |
Ph. Hartman, Ordinary Differential Equations, Mir, Moscow, 1970 |
23. |
M. Kholodniok, A. Klich, M. Kubichek, M. Marek, Methods of Analysis for Nonlinear Dynamical Models, Mir, Moscow, 1991 |
24. |
V. I. Shalashilin, E. B. Kuznetsov, Method of continuation of solutions with respect to parameter and optimal optimization, Editorial URSS, Moscow, 1999 |
25. |
Caillau J. B., Gergaud J., Noailles J., “3D geosynchronous transfer of a satellite: continuation on the thrust”, J. Optim. Theory Appl., 118:3 (2003), 541–565 |
26. |
Cesari L., Optimization – theory and applications. Problems with ordinary differential equations, Springer, New York–Heidelberg–Berlin, 1983 |
27. |
Gergaud J., Haberkorn T., “Homotopy method for minimum consumption orbit transfer problem”, ESAIM Control Optim. Calc. Var., 12:2 (2006), 294–310 |
28. |
Irving J. H., “Low thrust flight: variable exhaust velocity in gravitational fields”, Space Technol., 10:4 (1959), 10-01–10-54 |
29. |
Kopp R. E., Moyer H. G., “Necessary conditions for singular extremals”, AIAA J., 3:8 (1965), 1439–1444 |
30. |
Lyness J. N., “Numerical algorithms based on the theory of complex variables”, Proc. ACM 22nd Nat. Conf., Thompson Book Co., 1967, 124–134 |
31. |
Neustadt L. W., “A general theory of minimum-fuel space trajectories”, J. Soc. Indust. Appl. Math. Ser. A: Control, 3:2 (1965), 317–356 |
32. |
Oberle H. J., Taubert K., “Existence and multiple solutions of the minimum-fuel orbit transfer problem”, J. Optim. Theory Appl., 95:2 (1997), 243–262 |
33. |
Squire W., Trapp G., “Using complex variables to estimate derivatives of real functions”, SIAM Rev., 40 (1998), 110–112 |