RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Êîìïüþòåðíàÿ îïòèêà

Êîìïüþòåðíàÿ îïòèêà, 2023, òîì 47, âûïóñê 4, ñòðàíèöû 503–523 (Mi co1150)

Current state of the research on optoacoustic fiber-optic ultrasonic transducers based on thermoelastic effect and fiber-optic interferometric receivers
A. P. Mikitchuk, E. I. Girshova, V. V. Nikolaev

Ñïèñîê ëèòåðàòóðû

1. Czichos H, “Technical diagnostics: principles, methods, and applications”, NCSLI Measure, 9:2 (2014), 32–40  crossref
2. Worden K, et al., “The fundamental axioms of structural health monitoring”, Proc R Soc A, 463:2082 (2007), 1639–1664  crossref
3. Sposito G, et al., “A review of non-destructive techniques for the detection of creep damage in power plant steels”, NDT E Int, 43:7 (2010), 555–567  crossref
4. Hu C, Yu Z, Wang A, “An all fiber-optic multi-parameter structure health monitoring system”, Opt Express, 24:18 (2016), 20287–20296  crossref
5. Li W, Lan Z, Hu N, Deng M, “Modeling and simulation of backward combined harmonic generation induced by one-way mixing of longitudinal ultrasonic guided waves in a circular pipe”, Ultrasonics, 113 (2021), 106356  crossref
6. Kim S, Choi C, Cha Y, et al., “The efficacy of convenient cleaning methods applicable for customized abutments: an in vitro study”, BMC Oral Health, 21:1 (2021), 78  crossref
7. Biagi E, Margheri F, Menichelli D, “Efficient laser-ultrasound generation by using heavily absorbing films as targets”, IEEE Trans Ultrason Ferroelectr Freq Control, 48:6 (2001), 1669–1680  crossref
8. Hou Y, et al., “Characterization of à broadband all-optical ultrasound transducer”, Appl Phys Lett, 91:7 (2007), 073507  crossref
9. Yang T, et al., “Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection”, Opt Laser Technol, 101 (2018), 468–478  crossref
10. Lyamshev LM, “Optoacoustic sources of sound”, Sov Phys Usp, 24:12 (1981), 977–995  mathnet  crossref
11. Naugolnykh KA, Ostrovsky LA, Nonlinear wave processes in acoustics, Cambridge University Press, Cambridge, 1998  mathscinet  zmath
12. Akhmanov SA, Rudenko VZh, “Parametric laser emitter of ultrasound”, Jurnal Tehnicheskoi Fiziki, 1:15 (1975), 725–728 (in Russian)
13. Martellucci S, Analytical laser spectroscopy, Springer Science & Business Media, 2012
14. Stewart RB, Diebold GJ, “Radiation – induced thermal noise in optoacoustic detection cells”, J Appl Phys, 56:7 (1984), 1992–1996  crossref
15. Werner JPF, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC, “Structure-based mutagenesis of phycobiliprotein smURFP for optoacoustic imaging”, ACS Chem Biol, 14:9 (2019), 1896–1903  crossref
16. Yoshida S, Adhikari S, Gomi K, Shrestha R, Huggett D, Miyasaka C, Park I, “Opto-acoustic technique to evaluate adhesion strength of thin-film systems”, AIP Advances, 2:2 (2012), 022126  crossref
17. Kostli KP, Frauchiger D, Niederhauser JJ, Paltauf G, Weber HP, Frenz M, “Optoacoustic imaging using a three-dimensional reconstruction algorithm”, IEEE J Sel Top Quantum Electron, 7:6 (2001), 918–923  crossref
18. Wu N, et al., “Fiber optic ultrasound transmitters and their applications”, Measurement, 79 (2016), 164–171  crossref
19. Nishijima Y, Rosa L, Juodkazis S, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Opt Express, 20:10 (2012), 11466–11477  crossref
20. Tian Y, et al., “Numerical simulation of gold nanostructure absorption efficiency for fiber-optic optoacoustic generation”, Prog Electromagn Res Lett, 42 (2013), 209–223  crossref
21. Gaponenko SV, Introduction to nanophotonics, Cambridge University Press, Cambridge, 2010
22. Baranov AV, et al., Technique of physical experiment in systems with reduced dimension, “SPbGU ITMO” Publisher, Saint-Petersburg, 2009 (in Russian)
23. Hutter E, Fendler JH, “Exploitation of localized surface plasmon resonance”, Adv Mater, 16:19 (2006), 1685–1706  crossref
24. Lakowicz JR, et al., “Plasmon-controlled fluorescence: a new detection technology”, Proc SPIE, 6099 (2006), 609909  crossref
25. Noguez C, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment”, J Phys Chem C, 111:10 (2007), 3806–3819  crossref
26. Sekhon JS, Verma SS, “Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles”, Plasmonics, 6 (2011), 311–317  crossref
27. Hutter TS, Elliott R, Mahajan S, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants”, Nanotechnology, 24:3 (2013), 035201  crossref
28. Rivero PJ, Goicoechea J, Arregui FJ, “Localized surface plasmon resonance for optical fiber-sensing applications”, Nanoplasmonics – Fundamentals and applications, ed. Barbillon G, IntechOpen, 2017, 399–429  crossref
29. Singh CD, Shibata Y, Ogita M, “A theoretical study of tapered, porous clad optical fibers for detection of gases”, Sens Actuators B Chem, 92:1 (2003), 44–48  crossref
30. Zhou J, et al., “Water temperature measurement using à novel fiber optic ultrasound transducer system”, 2015 IEEE Int Conf on Information and Automation, 2015, 2316–2319  crossref
31. Yang L., “Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging”, Photoacoustics, 28 (2022), 100421  crossref
32. Bi S, “Ultrasonic transmission from fiber optic generators on steel plate”, Proc SPIE, 9804 (2016), 98040Q  crossref
33. Du C, “All-optical optoacoustic sensors for steel rebar corrosion monitoring”, Sensors, 18:5 (2018), 1353–1365  crossref
34. Zhou J, et al., “High temperature monitoring using à novel fiber optic ultrasonic sensing system”, Proc SPIE, 10639 (2018), 1063910  crossref
35. Jensen JA, “Medical ultrasound imaging”, Prog Biophys Mol Biol, 93:1–3 (2007), 153–165  crossref
36. Nelson TR, Pretorius TH, “Three-dimensional ultrasound imaging”, Ultrasound Med Biol, 24:9 (1998), 1243–1270  crossref
37. von Haxthausen F, Böttger S, Wulff D, et al., “Medical robotics for ultrasound imaging: Current systems and future trends”, Curr Robot Rep, 2:1 (2021), 55–71  crossref
38. Yu Y, Safari A, Niu X, Drinkwater B, Horoshenkov KV, “Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review”, Appl Acoust, 183 (2021), 108282  crossref
39. Bombarda D, Vitetta GM, Ferrante G, “Rail diagnostics based on ultrasonic guided waves: An overview”, Appl Sci, 11:3 (2021), 1071  crossref
40. Liu S, Sun Y, Jiang X, et al., “A review of wire rope detection methods, sensors and signal processing techniques”, J Nondestr Eval, 39:4 (2020), 85  crossref
41. Mangalgiri PD, “Corrosion issues in structural health monitoring of aircraft”, ISSS J Micro Smart Syst, 8:4 (2019), 49–78  crossref
42. Stras B, Conrad C, Walter B, “Production integrated nondestructive testing of composite materials and material compounds – An overview”, IOP Conference Series: Materials Science and Engineering, 181 (2017), 12017  crossref
43. Vavilov VP, “Thermal nondestructive testing of materials and products: a review”, Russ J Nondestruct Test, 53:10 (2017), 707–730  crossref
44. Toh N, Akagi T, Kasahara S, et al., “Evolution of echocardiography in adult congenital heart disease: from pulsed-wave Doppler to fusion imaging”, J Echocardiogr, 19:4 (2021), 205–211  crossref
45. Takaya Y, Ito H, “New horizon of fusion imaging using echocardiography: its progress in the diagnosis and treatment of cardiovascular disease”, J Echocardiogr, 18:1 (2020), 9–15  crossref
46. Meola M, Ibeas J, Lasalle G, Petrucci I, “Basics for performing a high-quality color Doppler sonography of the vascular access”, J Vasc Access, 22:1 (2021), 18–31  crossref
47. Martin KH, Dayton PA, “Current status and prospects for microbubbles in ultrasound theranostics”, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 5:4 (2017), 329–345  crossref
48. Dasgupta A, Liu M, Ojha T, Storm G, Kiessling F, Lammers T, “Ultrasound-mediated drug delivery to the brain: principles, progress and prospects”, Drug Discovery Today: Technologies, 20 (2016), 41–48  crossref
49. Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O, Glide C, “Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype”, Med Phys, 34:2 (2007), 773–785  crossref
50. Mahmud M, Islam MS, Ahmed A, Younis M, Choa F-S, “Cross-medium optoacoustic communications: challenges, and state of the art”, Sensors, 22:11 (2022), 4224  crossref
51. Ji Z, Fu Y, Li J, Zhao Z, Mai W, “Photoacoustic communication from the air to underwater based on low-cost passive relays”, IEEE Commun Mag, 59:1 (2021), 140–143  crossref
52. Sullenberger RM, Kaushik S, Wynn CM, “Photoacoustic communications: delivering audible signals via absorption of light by atmospheric H$_2$O”, Opt Lett, 44:3 (2019), 622–625  crossref
53. Schmid T, “Optoacoustic spectroscopy for process analysis”, Anal Bioanal Chem, 384:5 (2006), 1071–1086  crossref
54. Holthoff EL, Heaps DA, Pellegrino PM, “Development of a MEMS-scale optoacoustic chemical sensor using a quantum cascade laser”, IEEE Sensors J, 10:3 (2010), 572–577  crossref
55. Mothé G, Castro M, Sthel M, Lima G, Brasil L, Campos L, Rocha A, Vargas H, “Detection of greenhouse gas precursors from diesel engines using electrochemical and optoacoustic sensors”, Sensors, 10:11 (2010), 9726–9741  crossref
56. Elia A, Di Franco C, Lugarà PM, Scamarcio G, “Optoacoustic spectroscopy with quantum cascade lasers for trace gas detection”, Sensors, 6:10 (2006), 1411–1419  crossref
57. Zharov VP, Galanzha EI, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV, “Optoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo”, J Biomed Opt, 12:5 (2007), 051503  crossref
58. Johnson S, Proctor M, Bluth E, Smetherman D, Baumgarten K, Troxclair L, Bienvenu M, “Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes”, J Ultrasound Med, 32:10 (2013), 1799–1804  crossref
59. Lazarotto JS, Júnior EPM, Medeiros RC, et al., “Sanitary sewage disinfection with ultraviolet radiation and ultrasound”, Int J Environ Sci Technol, 19 (2021), 11531–11538  crossref
60. Khaire RA, Thorat BN, Gogate PR, “Applications of ultrasound for food preservation and disinfection: A critical review”, J Food Process Preserv, 46:10 (2021), e16091  crossref
61. Jatzwauk L, Schöne H, Pietsch H, “How to improve instrument disinfection by ultrasound”, J Hosp Infect, 48:A (2001), S80–S83  crossref
62. Winkler AM, Maslov K, Wang LV, “Noise-equivalent sensitivity of photoacoustics”, J Biomed Opt, 18:9 (2013), 97003  crossref
63. Kim KH, et al., “Air-coupled ultrasound detection using capillary-based optical ring resonators”, Sci Rep, 7 (2017), 109  crossref
64. Wissmeyer G, et al., “Looking at sound: optoacoustics with all-optical ultrasound detection”, Light Sci Appl, 7 (2018), 53  crossref
65. Liang Y, “Fiber-laser-based ultrasound sensor for photoacoustic imaging”, Sci Rep, 7 (2017), 40849  crossref
66. Zhou J, “High temperature monitoring using à novel fiber optic ultrasonic sensing system”, Proc SPIE, 10639 (2018), 1063910  crossref
67. Dong B, Sun C, Zhang H, “Optical detection of ultrasound in photoacoustic imaging”, IEEE Trans Biomed Eng, 64:1 (2017), 4–15  crossref
68. Zhou QF, et al., “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications”, Prog Mater Sci, 56:2 (2011), 139–174  crossref
69. Li X, et al., “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film”, IEEE Trans Ultrason Ferroelectr Freq Control, 58:11 (2011), 2281–2288  crossref
70. Niederhauser JJ, et al., “Transparent ITO coated PVDF transducer for optoacoustic depth profiling”, Opt Commun, 253:4–6 (2005), 401–406  crossref
71. Rousseau G, et al., “Non-contact biomedical photoacoustic and ultrasound imaging”, J Biomed Opt, 17:6 (2012), 61217  crossref
72. Nuster R, et al., “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography”, Opt Lett, 36:6 (2011), 981–983  crossref
73. Beard PC, et al., “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection”, IEEE Trans Ultrason Ferroelectr Freq Control, 46:6 (1999), 1575–1582  crossref
74. Beard PC, Mills TN, “An optical detection system for biomedical photoacoustic imaging”, Proc SPIE, 3916 (2000), 100–109  crossref
75. Grun H, et al., “Polymer fiber detectors for photoacoustic imaging”, Proc SPIE, 7564 (2010), 75640M  crossref
76. Rosenthal A, et al., “Wideband optical sensing using pulse interferometry”, Opt Express, 20:17 (2012), 19016–19029  crossref
77. Sheaff C, Ashkenazi S, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy”, Proc 2010 IEEE Int Ultrasonics Symp, 2010, 2135–2138  crossref
78. Govindan V, Ashkenazi S, “Bragg waveguide ultrasound detectors”, IEEE Trans UItrason Ferroelectr Freq Contr, 59:10 (2012), 2304–2311  crossref
79. Chao CY, et al., “High-frequency ultrasound sensors using polymer microring resonators”, IEEE Trans Ultrason Ferroelectr Freq Control, 54:5 (2007), 957–965  crossref
80. Ling T, et al., “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector”, Opt Express, 19:2 (2011), 861–869  crossref
81. Scruby CB, Drain LE, Laser ultrasonics techniques and applications, CRC Press, New York, 1990
82. Gusev V, Karabutov A, “Laser optoacoustics”, NASA STI/Recon Technical Report A, 93 (1991), 16842
83. Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Ivanov KA, Pozina G, Kozadaev KV, Egorov AYu, Kaliteevski MA, “Proposal for a photoacoustic ultrasonic generator based on Tamm plasmon structures”, Opt Express, 28:18 (2020), 26161-26169  crossref
84. Ling T, et al., “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector”, Opt Express, 19:2 (2011), 861–869  crossref
85. Zhigarkov VS, Yusupov VI, “Impulse pressure in laser printing with gel microdroplets”, Opt Laser Technol, 137 (2021), 106806  crossref
86. Kozhushko VV, Hess P, “Nondestructive evaluation of microcracks by laser-induced focused ultrasound”, Appl Phys Lett, 91:22 (2007), 224107  crossref
87. Baac HW, et al., “Photoacoustic concave transmitter for generating high frequency focused ultrasound”, Proc SPIE, 7564 (2010), 75642M  crossref
88. Passler K, et al, “Laser-generation of ultrasonic X-waves using axicon transducers”, Appl Phys Lett, 94:6 (2009), 064108  crossref
89. Baac HW, et al, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy”, Sci Rep, 2 (2012), 989–997  crossref
90. Chan W, Hies T, Ohl CD, “Laser-generated focused ultrasound for arbitrary waveforms”, Appl Phys Lett, 109:17 (2016), 174102  crossref
91. Hou Y, et al., “Improvements in optical generation of high-frequency ultrasound”, IEEE Trans Ultrason Ferroelectr Freq Control, 54:3 (2007), 682–686  crossref
92. Lee SH, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation”, Appl Phys Lett, 101:24 (2012), 241909  crossref
93. Hou Y, et al., “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure”, Appl Phys Lett, 89:9 (2006), 93901  crossref
94. Zou X, et al., “Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism”, Appl Opt, 52:25 (2013), 6239–6244  crossref
95. Hsieh BY, et al., “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film”, Appl Phys Lett, 106:2 (2015), 021902  crossref
96. Chang WY, et al., “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers”, Appl Phys Lett, 107:16 (2015), 161903  crossref
97. Biagi E, et al., “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions”, 2009 IEEE Int Ultrasonics Symp, 2009, 363–366  crossref
98. Colchester RJ, et al., “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings”, Appl Phys Lett, 104:17 (2014), 173502  crossref
99. Colchester RJ, et al., “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging”, Biomed Opt Express, 6:4 (2015), 1502–1511  crossref
100. Wu N, et. al., “Fiber optics photoacoustic generation using gold nanoparticles as target”, Proc SPIE, 7981 (2011), 798118  crossref
101. Wu N, et al., “Study of the compact fiber optic photoacoustic ultrasonic transducer”, Proc SPIE, 8345 (2012), 83453Z  crossref
102. Tian Y, “Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material”, J Comput Acoust, 21:2 (2013), 1350002  crossref
103. Tian Y, et al., “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by à focused ion beam”, Opt Eng, 52:6 (2013), 065005  crossref
104. Wu N, et al., “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite”, Proc SPIE, 8694 (2013), 86940Q  crossref
105. Zou X, et al., “Broadband miniature fiber optic ultrasound generator”, Opt Express, 22:15 (2014), 18119–18127  crossref
106. Lee J, Zaigham SB, Paeng D-G, “Shock wave characterization using different diameters of an optoacoustic carbon nanotube composite transducer”, Appl Sci, 12:14 (2022), 7300  crossref
107. Shi L, Jiang Y, Fernandez FR, et al., “Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter”, Light Sci Appl, 10:1 (2021), 143  crossref
108. Jiang Y, High precision optoacoustic neural modulation, Doctoral dissertation, Boston University, 2021
109. Du X, Li J, Niu G, et al., “Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging”, Nat Commun, 12:1 (2021), 3348  crossref
110. Hu X, Ma Y, Wan Q, Ying K-N, Dai L-N, Hu Z, Chen F, Guan F, Ni C, Guo LB, “Laser ultrasonic improvement and its application in defect detection based on the composite coating method”, Appl Opt, 61:14 (2022), 4145–4152  crossref
111. Girshova EI, Mikitchuk EP, Belonovskii AV, et al., “An optoacoustic ultrasound generator based on a tamm plasmon and organic active layer structure”, Tech Phys Lett, 47:4 (2021), 336–340  crossref
112. Liu S, Kim H, Huang W, Chang W-Y, Jiang X, Ryu JE, “Multiscale and multiphysics FEA simulation and materials optimization for laser ultrasound transducers”, Mater Today Commun, 31 (2022), 10359  crossref
113. Girshova EI, Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA, “Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors”, Computer Optics, 46:4 (2022), 561–566  crossref
114. Weiland T, “RF & microwave simulators – from component to system design”, 33rd European Microwave Conf Proc, 2 (2003), 591–596  crossref
115. Moreno F, Saiz JM, Gonzalez F, “Light scattering by particles on substrates. theory and experiments–nanostructure science and technology”, Light scattering and nanoscale surface roughness, ed. Maradudin AA, Springer, New York, 2007, 305–340  crossref
116. Saleh BEA, Teich MC, Fundamentals of photonics, John Wiley & Sons Inc, 1991
117. Ghaforyan H, Ebrahimzadeh M, Bilankohi SM, “Study of the optical properties of nanoparticles using Mie theory”, World Appl Program, 5:4 (2015), 79–82
118. Fabelinskii IL, Molecular scattering of light, Plenum Press, New York, 1968
119. Lindell IV, et al., “Scattering by a small object close to an interface. I. Exact-image theory formulation”, J Opt Soc Am A, 8:3 (1991), 472–476  crossref
120. Dmitriev A, Nanoplasmonic sensors, Springer, New York, 2012
121. Sonnichsen C, et al., “Drastic reduction of plasmon damping in gold nanorods”, Phys Rev Lett, 88:7 (2002), 077402  crossref
122. Petryayeva E, Krull UJ, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing – A review”, Anal Chim Acta, 706:1 (2011), 8–24  crossref
123. Willets KA, Van Duyne RP, “Localized surface plasmon resonance spectroscopy and sensing”, Annu Rev Phys Chem, 58 (2007), 267–297  crossref
124. Klimov V, Nanoplasmonics, Jenny Stanford Publishing, New York, 2014
125. Novotny L, Hecht B, Principles of nanooptics, Cambridge University Press, New York, 2006
126. Malinsky MD, et al., “Nanosphere lithography: effect of substrate on the localized surface Plasmon resonance spectrum of silver nanoparticles”, J Phys Chem, 105:12 (2001), 2343–2350  crossref
127. Yurkin MA, Huntemann M, “Rigorous and fast discrete dipole approximation for particles near a plane interface”, J Phys Chem, 119:52 (2015), 29088–29094  crossref
128. Amendola V, Bakr OM, Stellacci F, “A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly”, Plasmonics, 5:1 (2010), 85–97  crossref
129. Mishchenko MI, Travis LD, Mackowski DW, “T-matrix computations of light scattering by nonspherical particles: A review”, J Quant Spectrosc Radiat Transfer, 55:5 (1996), 535–575  crossref
130. Kurushin AA, Plasticov AN, Designing microwave devices in the environment CST Microwave Studio, MPEI Publishing House, Moscow, 2010 (in Russian)
131. Borovkov AI, et al., Computer engineering, SPbTU Publisher, Saint-Petersburg, 2012 (in Russian)
132. Borovkov AI, et al., Modern engineering education, SPbTU Publisher, Saint-Petersburg, 2012 (in Russian)
133. Horikoshi K, Kato T, “Theoretical study of the interparticle interaction of nanoparticles randomly dispersed on a substrate”, J Appl Phys, 117:2 (2015), 23117  crossref
134. Inan US, Marshall RA, Numerical electromagnetics: The FDTD method, Cambridge University Press, Cambridge, 2011  mathscinet
135. Krietenstein B, et al., “The perfect boundary approximation technique facing the challenge of high precision field computation”, 19th Int Linear Accelerator Conf, 1998, 860–862
136. Fritzen F, Bohlke T, “Influence of the type of boundary conditions on the numerical properties of unit cell problems”, Tech Mech, 30:4 (2010), 354–363
137. Diebold S, et al., “Modelling of transistor feeding structures based on electro-magnetic field simulations”, 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, 2012, 1–3  crossref
138. Sullivan DM, Electromagnetic simulation using the FDTD method, Wiley-IEEE Press, New York, 2013
139. Thoma P, Weiland T, “A subgridding method in combination with the finite integration technique”, 1995 25th European Microwave Conf, 2 (1995), 1–4  crossref
140. Tian Y, et al., “Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material”, J Comput Acoust, 21:2 (2013), 1350002  crossref
141. Kurushin AA, Plastikov AN, Electrodynamics for CAD users, “MEI” Publisher, Moscow, 2011 (in Russian)
142. Clemens M, Weiland T, “Discrete electromagnetism with the finite integration technique”, Progress in Electromagnetics Research, 32 (2001), 65–87  crossref  mathscinet
143. Bankov SE, Kurushin AA, Electrodynamics and microwave technology for CAD users, “IRE AN” Publisher, Moscow, 2008 (in Russian)
144. Pozar DM, Microwave engineering, 4th, John Wiley & Sons, Hoboken, 2012
145. Clemens M, Feigh S, Weiland T, “Geometric multigrid algorithms using the conformal finite integration technique”, IEEE Trans Magn, 40:2 (2004), 1065–1068  crossref
146. Bondeson A, Rylander T, Ingelstron P, Texts in applied mathematics – Computational electromagnetics, Springer, New York, 2005  mathscinet
147. Podoltsev AD, Kucherjavaya IN, “Multiphysics simulation of electrical devices”, Tehnichna Elektrodinamika, 2 (2015), 3–15 (in Russian)
148. Hameyer K, et al., “The classification of coupled field problems”, IEEE Trans Magn, 35:3 (1999), 1618–1621  crossref
149. Bezzubceva MM, Volkov VS, “Analytical review of application software packages for modeling energy processes in consumer energy systems of the agro-industrial complex”, Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental'nykh Issledovaniy, 6:2 (2015), 191–195 (in Russian)
150. Hoffmann J, et al., “Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas”, Proc SPIE, 7390 (2009), 73900J  crossref
151. Sarid D, Challener W, Modern introduction to surface plasmons: theory, mathematica modeling and applications, Cambridge University Press, New York, 2010  mathscinet
152. Wolfe C, “Multiphysics: the future of simulation”, ANSYS Advantage, 8:2 (2014), 6–10
153. Paulsen M, et al., “Simulation methods for multiperiodic and aperiodic nanostructured dielectric waveguides”, Opt Quantum Electron, 49:3 (2017), 107  crossref
154. Al-Mufti WM, Hashim U, Adam T, “The state of the arts: simulation of nanostructures using COMSOL Multiphysics”, Adv Mater Res, 832 (2013), 206–211  crossref
155. Zhangyang X, et al., “The effect of geometry parameters on light harvesting performance of GaN nanostructure arrays – a numerical investigation and simulation”, Mater Res Express, 7:1 (2019), 15009  crossref
156. Seth M, Ewusi-Annan E, Jensen L, “Controlling the non-resonant chemical mechanism of SERS using à molecular photoswitch”, Phys Chem Chem Phys, 11:34 (2009), 7424–7429  crossref
157. Li JF, et al., “Shelled-isolated nanoparticle-enhanced Raman spectroscopy”, Nature, 464 (2010), 392–395  crossref  mathscinet
158. Sidorov AN, et al., “A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth”, Carbon, 50:2 (2012), 699–705  crossref  mathscinet
159. Herrera GM, Padilla AC, Hernandez-Rivera SP, “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation”, Nanomaterials, 3:1 (2013), 158–172  crossref
160. Mikitchuk AP, Kozadaev KV, “Photostability of fiber-optic photoacoustic transducer based on silver nanoparticle layer”, Semiconductors, 54:14 (2020), 1836–1839  crossref
161. Goncharov VK, Kozadaev KV, Mikitchuk AP, Puzyrev MV, “Synthesis, structural and spectral properties of surface noble metal nanostructures for fiber-optic photoacoustic generation”, Semiconductors, 53:14 (2019), 1950–1953  crossref
162. Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Kaliteevski MA, “Prospects for using organic and metal–polymer materials in optoacoustic generators of ultrasound”, Bulletin of the Russian Academy of Sciences: Physics, 86:7 (2022), 833–836  crossref
163. Mikitchuk AP, Kozadaev KV, “Photoacoustic generation with surface noble metal nanostructures”, Semiconductors, 52:14 (2018), 1839–1842  crossref
164. Nishijima Y, Rosa L, Juodkazis S, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Opt Express, 20:10 (2012), 11466–11477  crossref
165. Pozar DM, Microwave engineering, John Wiley & Sons, 2012
166. Fritzen F, Bohlke T, “Influence of the type of boundary conditions on the numerical properties of unit cell problems”, Tech Mech, 30:4 (2010), 354–363
167. Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, “Hybrid metal polymer as a potential active medium of an optoacoustic generator”, Tech Phys Lett, 48:2 (2022), 32–35  crossref
168. Kreibig U, Vollmer M, Optical properties of metal clusters, Springer-Verlag, 1995
169. Mikitchuk AP, Girshova EI, Kugeiko MM, “Thermophysical and mechanical properties of active membranes for photoacoustic generators of forced acoustic oscillations”, Tech Phys Lett, 48:4 (2022), 50–53  crossref
170. Mikitchuk A, Kozadaev K, “Comprehensive theoretical study of optical, thermophysical and acoustic properties of surface nanostructures with metallic nanoparticles for fiber-optic photoacoustic ultrasound transducers”, Przeglad Elektrotechniczny, 96:3 (2020), 129–137  crossref


© ÌÈÀÍ, 2025