|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Czichos H, “Technical diagnostics: principles, methods, and applications”, NCSLI Measure, 9:2 (2014), 32–40 |
2. |
Worden K, et al., “The fundamental axioms of structural health monitoring”, Proc R Soc A, 463:2082 (2007), 1639–1664 |
3. |
Sposito G, et al., “A review of non-destructive techniques for the detection of creep damage in power plant steels”, NDT E Int, 43:7 (2010), 555–567 |
4. |
Hu C, Yu Z, Wang A, “An all fiber-optic multi-parameter structure health monitoring system”, Opt Express, 24:18 (2016), 20287–20296 |
5. |
Li W, Lan Z, Hu N, Deng M, “Modeling and simulation of backward combined harmonic generation induced by one-way mixing of longitudinal ultrasonic guided waves in a circular pipe”, Ultrasonics, 113 (2021), 106356 |
6. |
Kim S, Choi C, Cha Y, et al., “The efficacy of convenient cleaning methods applicable for customized abutments: an in vitro study”, BMC Oral Health, 21:1 (2021), 78 |
7. |
Biagi E, Margheri F, Menichelli D, “Efficient laser-ultrasound generation by using heavily absorbing films as targets”, IEEE Trans Ultrason Ferroelectr Freq Control, 48:6 (2001), 1669–1680 |
8. |
Hou Y, et al., “Characterization of à broadband all-optical ultrasound transducer”, Appl Phys Lett, 91:7 (2007), 073507 |
9. |
Yang T, et al., “Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection”, Opt Laser Technol, 101 (2018), 468–478 |
10. |
Lyamshev LM, “Optoacoustic sources of sound”, Sov Phys Usp, 24:12 (1981), 977–995 |
11. |
Naugolnykh KA, Ostrovsky LA, Nonlinear wave processes in acoustics, Cambridge University Press, Cambridge, 1998 |
12. |
Akhmanov SA, Rudenko VZh, “Parametric laser emitter of ultrasound”, Jurnal Tehnicheskoi Fiziki, 1:15 (1975), 725–728 (in Russian) |
13. |
Martellucci S, Analytical laser spectroscopy, Springer Science & Business Media, 2012 |
14. |
Stewart RB, Diebold GJ, “Radiation – induced thermal noise in optoacoustic detection cells”, J Appl Phys, 56:7 (1984), 1992–1996 |
15. |
Werner JPF, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC, “Structure-based mutagenesis of phycobiliprotein smURFP for optoacoustic imaging”, ACS Chem Biol, 14:9 (2019), 1896–1903 |
16. |
Yoshida S, Adhikari S, Gomi K, Shrestha R, Huggett D, Miyasaka C, Park I, “Opto-acoustic technique to evaluate adhesion strength of thin-film systems”, AIP Advances, 2:2 (2012), 022126 |
17. |
Kostli KP, Frauchiger D, Niederhauser JJ, Paltauf G, Weber HP, Frenz M, “Optoacoustic imaging using a three-dimensional reconstruction algorithm”, IEEE J Sel Top Quantum Electron, 7:6 (2001), 918–923 |
18. |
Wu N, et al., “Fiber optic ultrasound transmitters and their applications”, Measurement, 79 (2016), 164–171 |
19. |
Nishijima Y, Rosa L, Juodkazis S, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Opt Express, 20:10 (2012), 11466–11477 |
20. |
Tian Y, et al., “Numerical simulation of gold nanostructure absorption efficiency for fiber-optic optoacoustic generation”, Prog Electromagn Res Lett, 42 (2013), 209–223 |
21. |
Gaponenko SV, Introduction to nanophotonics, Cambridge University Press, Cambridge, 2010 |
22. |
Baranov AV, et al., Technique of physical experiment in systems with reduced dimension, “SPbGU ITMO” Publisher, Saint-Petersburg, 2009 (in Russian) |
23. |
Hutter E, Fendler JH, “Exploitation of localized surface plasmon resonance”, Adv Mater, 16:19 (2006), 1685–1706 |
24. |
Lakowicz JR, et al., “Plasmon-controlled fluorescence: a new detection technology”, Proc SPIE, 6099 (2006), 609909 |
25. |
Noguez C, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment”, J Phys Chem C, 111:10 (2007), 3806–3819 |
26. |
Sekhon JS, Verma SS, “Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles”, Plasmonics, 6 (2011), 311–317 |
27. |
Hutter TS, Elliott R, Mahajan S, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants”, Nanotechnology, 24:3 (2013), 035201 |
28. |
Rivero PJ, Goicoechea J, Arregui FJ, “Localized surface plasmon resonance for optical fiber-sensing applications”, Nanoplasmonics – Fundamentals and applications, ed. Barbillon G, IntechOpen, 2017, 399–429 |
29. |
Singh CD, Shibata Y, Ogita M, “A theoretical study of tapered, porous clad optical fibers for detection of gases”, Sens Actuators B Chem, 92:1 (2003), 44–48 |
30. |
Zhou J, et al., “Water temperature measurement using à novel fiber optic ultrasound transducer system”, 2015 IEEE Int Conf on Information and Automation, 2015, 2316–2319 |
31. |
Yang L., “Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging”, Photoacoustics, 28 (2022), 100421 |
32. |
Bi S, “Ultrasonic transmission from fiber optic generators on steel plate”, Proc SPIE, 9804 (2016), 98040Q |
33. |
Du C, “All-optical optoacoustic sensors for steel rebar corrosion monitoring”, Sensors, 18:5 (2018), 1353–1365 |
34. |
Zhou J, et al., “High temperature monitoring using à novel fiber optic ultrasonic sensing system”, Proc SPIE, 10639 (2018), 1063910 |
35. |
Jensen JA, “Medical ultrasound imaging”, Prog Biophys Mol Biol, 93:1–3 (2007), 153–165 |
36. |
Nelson TR, Pretorius TH, “Three-dimensional ultrasound imaging”, Ultrasound Med Biol, 24:9 (1998), 1243–1270 |
37. |
von Haxthausen F, Böttger S, Wulff D, et al., “Medical robotics for ultrasound imaging: Current systems and future trends”, Curr Robot Rep, 2:1 (2021), 55–71 |
38. |
Yu Y, Safari A, Niu X, Drinkwater B, Horoshenkov KV, “Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review”, Appl Acoust, 183 (2021), 108282 |
39. |
Bombarda D, Vitetta GM, Ferrante G, “Rail diagnostics based on ultrasonic guided waves: An overview”, Appl Sci, 11:3 (2021), 1071 |
40. |
Liu S, Sun Y, Jiang X, et al., “A review of wire rope detection methods, sensors and signal processing techniques”, J Nondestr Eval, 39:4 (2020), 85 |
41. |
Mangalgiri PD, “Corrosion issues in structural health monitoring of aircraft”, ISSS J Micro Smart Syst, 8:4 (2019), 49–78 |
42. |
Stras B, Conrad C, Walter B, “Production integrated nondestructive testing of composite materials and material compounds – An overview”, IOP Conference Series: Materials Science and Engineering, 181 (2017), 12017 |
43. |
Vavilov VP, “Thermal nondestructive testing of materials and products: a review”, Russ J Nondestruct Test, 53:10 (2017), 707–730 |
44. |
Toh N, Akagi T, Kasahara S, et al., “Evolution of echocardiography in adult congenital heart disease: from pulsed-wave Doppler to fusion imaging”, J Echocardiogr, 19:4 (2021), 205–211 |
45. |
Takaya Y, Ito H, “New horizon of fusion imaging using echocardiography: its progress in the diagnosis and treatment of cardiovascular disease”, J Echocardiogr, 18:1 (2020), 9–15 |
46. |
Meola M, Ibeas J, Lasalle G, Petrucci I, “Basics for performing a high-quality color Doppler sonography of the vascular access”, J Vasc Access, 22:1 (2021), 18–31 |
47. |
Martin KH, Dayton PA, “Current status and prospects for microbubbles in ultrasound theranostics”, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 5:4 (2017), 329–345 |
48. |
Dasgupta A, Liu M, Ojha T, Storm G, Kiessling F, Lammers T, “Ultrasound-mediated drug delivery to the brain: principles, progress and prospects”, Drug Discovery Today: Technologies, 20 (2016), 41–48 |
49. |
Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O, Glide C, “Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype”, Med Phys, 34:2 (2007), 773–785 |
50. |
Mahmud M, Islam MS, Ahmed A, Younis M, Choa F-S, “Cross-medium optoacoustic communications: challenges, and state of the art”, Sensors, 22:11 (2022), 4224 |
51. |
Ji Z, Fu Y, Li J, Zhao Z, Mai W, “Photoacoustic communication from the air to underwater based on low-cost passive relays”, IEEE Commun Mag, 59:1 (2021), 140–143 |
52. |
Sullenberger RM, Kaushik S, Wynn CM, “Photoacoustic communications: delivering audible signals via absorption of light by atmospheric H$_2$O”, Opt Lett, 44:3 (2019), 622–625 |
53. |
Schmid T, “Optoacoustic spectroscopy for process analysis”, Anal Bioanal Chem, 384:5 (2006), 1071–1086 |
54. |
Holthoff EL, Heaps DA, Pellegrino PM, “Development of a MEMS-scale optoacoustic chemical sensor using a quantum cascade laser”, IEEE Sensors J, 10:3 (2010), 572–577 |
55. |
Mothé G, Castro M, Sthel M, Lima G, Brasil L, Campos L, Rocha A, Vargas H, “Detection of greenhouse gas precursors from diesel engines using electrochemical and optoacoustic sensors”, Sensors, 10:11 (2010), 9726–9741 |
56. |
Elia A, Di Franco C, Lugarà PM, Scamarcio G, “Optoacoustic spectroscopy with quantum cascade lasers for trace gas detection”, Sensors, 6:10 (2006), 1411–1419 |
57. |
Zharov VP, Galanzha EI, Shashkov EV, Kim J-W, Khlebtsov NG, Tuchin VV, “Optoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo”, J Biomed Opt, 12:5 (2007), 051503 |
58. |
Johnson S, Proctor M, Bluth E, Smetherman D, Baumgarten K, Troxclair L, Bienvenu M, “Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes”, J Ultrasound Med, 32:10 (2013), 1799–1804 |
59. |
Lazarotto JS, Júnior EPM, Medeiros RC, et al., “Sanitary sewage disinfection with ultraviolet radiation and ultrasound”, Int J Environ Sci Technol, 19 (2021), 11531–11538 |
60. |
Khaire RA, Thorat BN, Gogate PR, “Applications of ultrasound for food preservation and disinfection: A critical review”, J Food Process Preserv, 46:10 (2021), e16091 |
61. |
Jatzwauk L, Schöne H, Pietsch H, “How to improve instrument disinfection by ultrasound”, J Hosp Infect, 48:A (2001), S80–S83 |
62. |
Winkler AM, Maslov K, Wang LV, “Noise-equivalent sensitivity of photoacoustics”, J Biomed Opt, 18:9 (2013), 97003 |
63. |
Kim KH, et al., “Air-coupled ultrasound detection using capillary-based optical ring resonators”, Sci Rep, 7 (2017), 109 |
64. |
Wissmeyer G, et al., “Looking at sound: optoacoustics with all-optical ultrasound detection”, Light Sci Appl, 7 (2018), 53 |
65. |
Liang Y, “Fiber-laser-based ultrasound sensor for photoacoustic imaging”, Sci Rep, 7 (2017), 40849 |
66. |
Zhou J, “High temperature monitoring using à novel fiber optic ultrasonic sensing system”, Proc SPIE, 10639 (2018), 1063910 |
67. |
Dong B, Sun C, Zhang H, “Optical detection of ultrasound in photoacoustic imaging”, IEEE Trans Biomed Eng, 64:1 (2017), 4–15 |
68. |
Zhou QF, et al., “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications”, Prog Mater Sci, 56:2 (2011), 139–174 |
69. |
Li X, et al., “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film”, IEEE Trans Ultrason Ferroelectr Freq Control, 58:11 (2011), 2281–2288 |
70. |
Niederhauser JJ, et al., “Transparent ITO coated PVDF transducer for optoacoustic depth profiling”, Opt Commun, 253:4–6 (2005), 401–406 |
71. |
Rousseau G, et al., “Non-contact biomedical photoacoustic and ultrasound imaging”, J Biomed Opt, 17:6 (2012), 61217 |
72. |
Nuster R, et al., “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography”, Opt Lett, 36:6 (2011), 981–983 |
73. |
Beard PC, et al., “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection”, IEEE Trans Ultrason Ferroelectr Freq Control, 46:6 (1999), 1575–1582 |
74. |
Beard PC, Mills TN, “An optical detection system for biomedical photoacoustic imaging”, Proc SPIE, 3916 (2000), 100–109 |
75. |
Grun H, et al., “Polymer fiber detectors for photoacoustic imaging”, Proc SPIE, 7564 (2010), 75640M |
76. |
Rosenthal A, et al., “Wideband optical sensing using pulse interferometry”, Opt Express, 20:17 (2012), 19016–19029 |
77. |
Sheaff C, Ashkenazi S, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy”, Proc 2010 IEEE Int Ultrasonics Symp, 2010, 2135–2138 |
78. |
Govindan V, Ashkenazi S, “Bragg waveguide ultrasound detectors”, IEEE Trans UItrason Ferroelectr Freq Contr, 59:10 (2012), 2304–2311 |
79. |
Chao CY, et al., “High-frequency ultrasound sensors using polymer microring resonators”, IEEE Trans Ultrason Ferroelectr Freq Control, 54:5 (2007), 957–965 |
80. |
Ling T, et al., “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector”, Opt Express, 19:2 (2011), 861–869 |
81. |
Scruby CB, Drain LE, Laser ultrasonics techniques and applications, CRC Press, New York, 1990 |
82. |
Gusev V, Karabutov A, “Laser optoacoustics”, NASA STI/Recon Technical Report A, 93 (1991), 16842 |
83. |
Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Ivanov KA, Pozina G, Kozadaev KV, Egorov AYu, Kaliteevski MA, “Proposal for a photoacoustic ultrasonic generator based on Tamm plasmon structures”, Opt Express, 28:18 (2020), 26161-26169 |
84. |
Ling T, et al., “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector”, Opt Express, 19:2 (2011), 861–869 |
85. |
Zhigarkov VS, Yusupov VI, “Impulse pressure in laser printing with gel microdroplets”, Opt Laser Technol, 137 (2021), 106806 |
86. |
Kozhushko VV, Hess P, “Nondestructive evaluation of microcracks by laser-induced focused ultrasound”, Appl Phys Lett, 91:22 (2007), 224107 |
87. |
Baac HW, et al., “Photoacoustic concave transmitter for generating high frequency focused ultrasound”, Proc SPIE, 7564 (2010), 75642M |
88. |
Passler K, et al, “Laser-generation of ultrasonic X-waves using axicon transducers”, Appl Phys Lett, 94:6 (2009), 064108 |
89. |
Baac HW, et al, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy”, Sci Rep, 2 (2012), 989–997 |
90. |
Chan W, Hies T, Ohl CD, “Laser-generated focused ultrasound for arbitrary waveforms”, Appl Phys Lett, 109:17 (2016), 174102 |
91. |
Hou Y, et al., “Improvements in optical generation of high-frequency ultrasound”, IEEE Trans Ultrason Ferroelectr Freq Control, 54:3 (2007), 682–686 |
92. |
Lee SH, “Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation”, Appl Phys Lett, 101:24 (2012), 241909 |
93. |
Hou Y, et al., “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure”, Appl Phys Lett, 89:9 (2006), 93901 |
94. |
Zou X, et al., “Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism”, Appl Opt, 52:25 (2013), 6239–6244 |
95. |
Hsieh BY, et al., “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film”, Appl Phys Lett, 106:2 (2015), 021902 |
96. |
Chang WY, et al., “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers”, Appl Phys Lett, 107:16 (2015), 161903 |
97. |
Biagi E, et al., “Fiber optic broadband ultrasonic probe for virtual biopsy: Technological solutions”, 2009 IEEE Int Ultrasonics Symp, 2009, 363–366 |
98. |
Colchester RJ, et al., “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings”, Appl Phys Lett, 104:17 (2014), 173502 |
99. |
Colchester RJ, et al., “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging”, Biomed Opt Express, 6:4 (2015), 1502–1511 |
100. |
Wu N, et. al., “Fiber optics photoacoustic generation using gold nanoparticles as target”, Proc SPIE, 7981 (2011), 798118 |
101. |
Wu N, et al., “Study of the compact fiber optic photoacoustic ultrasonic transducer”, Proc SPIE, 8345 (2012), 83453Z |
102. |
Tian Y, “Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material”, J Comput Acoust, 21:2 (2013), 1350002 |
103. |
Tian Y, et al., “Fiber-optic ultrasound generator using periodic gold nanopores fabricated by à focused ion beam”, Opt Eng, 52:6 (2013), 065005 |
104. |
Wu N, et al., “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite”, Proc SPIE, 8694 (2013), 86940Q |
105. |
Zou X, et al., “Broadband miniature fiber optic ultrasound generator”, Opt Express, 22:15 (2014), 18119–18127 |
106. |
Lee J, Zaigham SB, Paeng D-G, “Shock wave characterization using different diameters of an optoacoustic carbon nanotube composite transducer”, Appl Sci, 12:14 (2022), 7300 |
107. |
Shi L, Jiang Y, Fernandez FR, et al., “Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter”, Light Sci Appl, 10:1 (2021), 143 |
108. |
Jiang Y, High precision optoacoustic neural modulation, Doctoral dissertation, Boston University, 2021 |
109. |
Du X, Li J, Niu G, et al., “Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging”, Nat Commun, 12:1 (2021), 3348 |
110. |
Hu X, Ma Y, Wan Q, Ying K-N, Dai L-N, Hu Z, Chen F, Guan F, Ni C, Guo LB, “Laser ultrasonic improvement and its application in defect detection based on the composite coating method”, Appl Opt, 61:14 (2022), 4145–4152 |
111. |
Girshova EI, Mikitchuk EP, Belonovskii AV, et al., “An optoacoustic ultrasound generator based on a tamm plasmon and organic active layer structure”, Tech Phys Lett, 47:4 (2021), 336–340 |
112. |
Liu S, Kim H, Huang W, Chang W-Y, Jiang X, Ryu JE, “Multiscale and multiphysics FEA simulation and materials optimization for laser ultrasound transducers”, Mater Today Commun, 31 (2022), 10359 |
113. |
Girshova EI, Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA, “Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors”, Computer Optics, 46:4 (2022), 561–566 |
114. |
Weiland T, “RF & microwave simulators – from component to system design”, 33rd European Microwave Conf Proc, 2 (2003), 591–596 |
115. |
Moreno F, Saiz JM, Gonzalez F, “Light scattering by particles on substrates. theory and experiments–nanostructure science and technology”, Light scattering and nanoscale surface roughness, ed. Maradudin AA, Springer, New York, 2007, 305–340 |
116. |
Saleh BEA, Teich MC, Fundamentals of photonics, John Wiley & Sons Inc, 1991 |
117. |
Ghaforyan H, Ebrahimzadeh M, Bilankohi SM, “Study of the optical properties of nanoparticles using Mie theory”, World Appl Program, 5:4 (2015), 79–82 |
118. |
Fabelinskii IL, Molecular scattering of light, Plenum Press, New York, 1968 |
119. |
Lindell IV, et al., “Scattering by a small object close to an interface. I. Exact-image theory formulation”, J Opt Soc Am A, 8:3 (1991), 472–476 |
120. |
Dmitriev A, Nanoplasmonic sensors, Springer, New York, 2012 |
121. |
Sonnichsen C, et al., “Drastic reduction of plasmon damping in gold nanorods”, Phys Rev Lett, 88:7 (2002), 077402 |
122. |
Petryayeva E, Krull UJ, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing – A review”, Anal Chim Acta, 706:1 (2011), 8–24 |
123. |
Willets KA, Van Duyne RP, “Localized surface plasmon resonance spectroscopy and sensing”, Annu Rev Phys Chem, 58 (2007), 267–297 |
124. |
Klimov V, Nanoplasmonics, Jenny Stanford Publishing, New York, 2014 |
125. |
Novotny L, Hecht B, Principles of nanooptics, Cambridge University Press, New York, 2006 |
126. |
Malinsky MD, et al., “Nanosphere lithography: effect of substrate on the localized surface Plasmon resonance spectrum of silver nanoparticles”, J Phys Chem, 105:12 (2001), 2343–2350 |
127. |
Yurkin MA, Huntemann M, “Rigorous and fast discrete dipole approximation for particles near a plane interface”, J Phys Chem, 119:52 (2015), 29088–29094 |
128. |
Amendola V, Bakr OM, Stellacci F, “A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly”, Plasmonics, 5:1 (2010), 85–97 |
129. |
Mishchenko MI, Travis LD, Mackowski DW, “T-matrix computations of light scattering by nonspherical particles: A review”, J Quant Spectrosc Radiat Transfer, 55:5 (1996), 535–575 |
130. |
Kurushin AA, Plasticov AN, Designing microwave devices in the environment CST Microwave Studio, MPEI Publishing House, Moscow, 2010 (in Russian) |
131. |
Borovkov AI, et al., Computer engineering, SPbTU Publisher, Saint-Petersburg, 2012 (in Russian) |
132. |
Borovkov AI, et al., Modern engineering education, SPbTU Publisher, Saint-Petersburg, 2012 (in Russian) |
133. |
Horikoshi K, Kato T, “Theoretical study of the interparticle interaction of nanoparticles randomly dispersed on a substrate”, J Appl Phys, 117:2 (2015), 23117 |
134. |
Inan US, Marshall RA, Numerical electromagnetics: The FDTD method, Cambridge University Press, Cambridge, 2011 |
135. |
Krietenstein B, et al., “The perfect boundary approximation technique facing the challenge of high precision field computation”, 19th Int Linear Accelerator Conf, 1998, 860–862 |
136. |
Fritzen F, Bohlke T, “Influence of the type of boundary conditions on the numerical properties of unit cell problems”, Tech Mech, 30:4 (2010), 354–363 |
137. |
Diebold S, et al., “Modelling of transistor feeding structures based on electro-magnetic field simulations”, 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, 2012, 1–3 |
138. |
Sullivan DM, Electromagnetic simulation using the FDTD method, Wiley-IEEE Press, New York, 2013 |
139. |
Thoma P, Weiland T, “A subgridding method in combination with the finite integration technique”, 1995 25th European Microwave Conf, 2 (1995), 1–4 |
140. |
Tian Y, et al., “Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material”, J Comput Acoust, 21:2 (2013), 1350002 |
141. |
Kurushin AA, Plastikov AN, Electrodynamics for CAD users, “MEI” Publisher, Moscow, 2011 (in Russian) |
142. |
Clemens M, Weiland T, “Discrete electromagnetism with the finite integration technique”, Progress in Electromagnetics Research, 32 (2001), 65–87 |
143. |
Bankov SE, Kurushin AA, Electrodynamics and microwave technology for CAD users, “IRE AN” Publisher, Moscow, 2008 (in Russian) |
144. |
Pozar DM, Microwave engineering, 4th, John Wiley & Sons, Hoboken, 2012 |
145. |
Clemens M, Feigh S, Weiland T, “Geometric multigrid algorithms using the conformal finite integration technique”, IEEE Trans Magn, 40:2 (2004), 1065–1068 |
146. |
Bondeson A, Rylander T, Ingelstron P, Texts in applied mathematics – Computational electromagnetics, Springer, New York, 2005 |
147. |
Podoltsev AD, Kucherjavaya IN, “Multiphysics simulation of electrical devices”, Tehnichna Elektrodinamika, 2 (2015), 3–15 (in Russian) |
148. |
Hameyer K, et al., “The classification of coupled field problems”, IEEE Trans Magn, 35:3 (1999), 1618–1621 |
149. |
Bezzubceva MM, Volkov VS, “Analytical review of application software packages for modeling energy processes in consumer energy systems of the agro-industrial complex”, Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental'nykh Issledovaniy, 6:2 (2015), 191–195 (in Russian) |
150. |
Hoffmann J, et al., “Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas”, Proc SPIE, 7390 (2009), 73900J |
151. |
Sarid D, Challener W, Modern introduction to surface plasmons: theory, mathematica modeling and applications, Cambridge University Press, New York, 2010 |
152. |
Wolfe C, “Multiphysics: the future of simulation”, ANSYS Advantage, 8:2 (2014), 6–10 |
153. |
Paulsen M, et al., “Simulation methods for multiperiodic and aperiodic nanostructured dielectric waveguides”, Opt Quantum Electron, 49:3 (2017), 107 |
154. |
Al-Mufti WM, Hashim U, Adam T, “The state of the arts: simulation of nanostructures using COMSOL Multiphysics”, Adv Mater Res, 832 (2013), 206–211 |
155. |
Zhangyang X, et al., “The effect of geometry parameters on light harvesting performance of GaN nanostructure arrays – a numerical investigation and simulation”, Mater Res Express, 7:1 (2019), 15009 |
156. |
Seth M, Ewusi-Annan E, Jensen L, “Controlling the non-resonant chemical mechanism of SERS using à molecular photoswitch”, Phys Chem Chem Phys, 11:34 (2009), 7424–7429 |
157. |
Li JF, et al., “Shelled-isolated nanoparticle-enhanced Raman spectroscopy”, Nature, 464 (2010), 392–395 |
158. |
Sidorov AN, et al., “A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth”, Carbon, 50:2 (2012), 699–705 |
159. |
Herrera GM, Padilla AC, Hernandez-Rivera SP, “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation”, Nanomaterials, 3:1 (2013), 158–172 |
160. |
Mikitchuk AP, Kozadaev KV, “Photostability of fiber-optic photoacoustic transducer based on silver nanoparticle layer”, Semiconductors, 54:14 (2020), 1836–1839 |
161. |
Goncharov VK, Kozadaev KV, Mikitchuk AP, Puzyrev MV, “Synthesis, structural and spectral properties of surface noble metal nanostructures for fiber-optic photoacoustic generation”, Semiconductors, 53:14 (2019), 1950–1953 |
162. |
Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Kaliteevski MA, “Prospects for using organic and metal–polymer materials in optoacoustic generators of ultrasound”, Bulletin of the Russian Academy of Sciences: Physics, 86:7 (2022), 833–836 |
163. |
Mikitchuk AP, Kozadaev KV, “Photoacoustic generation with surface noble metal nanostructures”, Semiconductors, 52:14 (2018), 1839–1842 |
164. |
Nishijima Y, Rosa L, Juodkazis S, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Opt Express, 20:10 (2012), 11466–11477 |
165. |
Pozar DM, Microwave engineering, John Wiley & Sons, 2012 |
166. |
Fritzen F, Bohlke T, “Influence of the type of boundary conditions on the numerical properties of unit cell problems”, Tech Mech, 30:4 (2010), 354–363 |
167. |
Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, “Hybrid metal polymer as a potential active medium of an optoacoustic generator”, Tech Phys Lett, 48:2 (2022), 32–35 |
168. |
Kreibig U, Vollmer M, Optical properties of metal clusters, Springer-Verlag, 1995 |
169. |
Mikitchuk AP, Girshova EI, Kugeiko MM, “Thermophysical and mechanical properties of active membranes for photoacoustic generators of forced acoustic oscillations”, Tech Phys Lett, 48:4 (2022), 50–53 |
170. |
Mikitchuk A, Kozadaev K, “Comprehensive theoretical study of optical, thermophysical and acoustic properties of surface nanostructures with metallic nanoparticles for fiber-optic photoacoustic ultrasound transducers”, Przeglad Elektrotechniczny, 96:3 (2020), 129–137 |