|
|
|
Список литературы
|
|
|
1. |
Romanova GE, Nguyen NS, “Aberration analysis of decentered lenses for the compensation of vergence-accommodation conflict in virtual reality systems”, J Opt Technol, 89:9 (2022), 517–523 |
2. |
Brian W, Jacques G, Melissa G, Hybrid Fresnel lens with reduced artifacts, US Patent 10133076B2, 2018 |
3. |
Xie WT, Dai YJ, Wang RZ, Sumathy K, “Concentrated solar energy applications using Fresnel lenses: A review”, Renew Sust Energ Rev, 15:6 (2011), 2588–2606 |
4. |
Leutz R, Suzuki A, Akisawa A, Kashiwagi T, “Developments and designs of solar engineering Fresnel lenses”, China Proc Symp on Energy Engineering (SEE 2000), 2 (2000), 759–765 |
5. |
Bang K, Jo Y, Chae M, et al., “Lenslet VR: Thin, flat and Wide-FOV virtual reality display using fresnel lens and lenslet array”, IEEE Transactions on Visualization and Computer Graphics, 27:5 (2021), 2545–2554 |
6. |
Greisukh GI, Stepanov SA, Antonov AI, “Comparative analysis of the fresnel lens and the kinoform lens”, Computer Optics, 42:3 (2018), 369–376 |
7. |
Delano E, “Primary aberrations of Fresnel lenses”, J Opt Soc Am, 64:4 (1974), 459–468 |
8. |
Delano E, “Primary aberrations of meniscus Fresnel lenses”, J Opt Soc Am, 66:12 (1976), 1317–1320 |
9. |
Delano E, “Primary aberration contributions for curved Fresnel surfaces”, J Opt Soc Am, 68:10 (1978), 1306–1309 |
10. |
Slyusarev GG, Methods of calculating optical systems, “Mashinostroenie” Publisher, Moscow, 1969 (in Russian) |
11. |
Hopkins HH, Wave theory of aberrations, Oxford University Press, New York, 1950 |
12. |
Jing LC, “Ray tracing of Fresnel systems”, Appl Opt, 22:4 (1983), 560–562 |
13. |
Bobrov ST, Greisukh GI, Turkevich YuG, Optics of diffraction elements and systems, “Mashinostroenie” Publisher, Leningrad, 1986 (in Russian) |
14. |
Zemax Optic Studio 19.8 User manual, October 2019, 2019 |