|
|
|
Список литературы
|
|
|
1. |
Gabitto MI, Marie-Nellie H, Pakman A, Pataki A, Darzacq X, Jordan MI, “A Bayesian nonparametric approach to super-resolution single-molecule localization”, Ann Appl Stat, 15:4 (2021), 1742–1766 |
2. |
Nevskyi O, Tsukanov R, Gregor I, Karedla N, Enderlein J, “Fluorescence polarization filtering for accurate single molecule localization”, APL Photon, 5:6 (2020), 061302 |
3. |
Costello I, Cox S, “Analysing errors in single-molecule localisation microscopy”, Int J Biochem Cell Biol, 27:2 (2021), 105931 |
4. |
Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, Brasselet S, “4polar-STORM polarized super-resolution imaging of actin filament organization in cells”, Nat Commun, 13:1 (2022), 301 |
5. |
Kwon J, Elgawish MS, Shim SH, “Bleaching-resistant super-resolution fluorescence microscopy”, Adv Sci, 9:9 (2022), 2101917 |
6. |
Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ”, Nat Methods, 7:5 (2010), 339–340 |
7. |
Kozma E, Kele P, “Fluorogenic probes for super-resolution microscopy”, Org Biomol Chem, 15:17 (2019), 215–233 |
8. |
Chung J, Jeong U, Jeong D, Go S, Kim D, “Development of a new approach for low-laser-power super-resolution fluorescence imaging”, Anal Chem, 101:94 (2021), 618–627 |
9. |
Jeong D, Kim D, “Super-resolution fluorescence microscopy-based single-molecule spectroscopy”, Bulletin of the Korean Chemical Society, 43:12 (2022), 316–327 |
10. |
Roa C, Le VND, Mahendroo M, Saytashev I, Ramella-Roman JC, “Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using”, Biomed Opt Express, 12:4 (2021), 2236–2249 |
11. |
Holden SJ, Uphoff S, Kapanidis AN, “DAOSTORM: an algorithm for high-density super-resolution microscopy”, Nat Methods, 8:4 (2011), 279–280 |
12. |
Junhong M, Cédric V, Hagai K, Lina C, Nicolas O, Seamus H, Suliana M, Chul YJ, Michael U, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data”, Sci Rep, 4:4 (2014), 4577 |
13. |
Zhu L, Zhang W, Elnatan D, Huang B, “Faster STORM using compressed sensing”, Nat Methods, 9:7 (2012), 721–723 |
14. |
Cheng T, Chen DN, Yu B, Niu HB, “Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation”, Biomed Opt Express, 8:5 (2017), 2445–2457 |
15. |
Arjoune Y, Kaabouch N, Ghazi HE, Tamtaoui A, “A performance comparison of measurement matrices in compressive sensing”, Int J Commun Syst, 31:2 (2018), e3576 |
16. |
Calisesi G, Ghezzi A, Ancora D, D'Andrea C, Valentini G, Farina A, Bassi A, “Compressed sensing in fluorescence microscopy”, Prog Biophys Mol Biol, 60:6 (2022), 66–80 |
17. |
Thompson RE, Larson DR, Webb WW, “Precise nanometer localization analysis for individual fluorescent probes”, Biophys J, 43:82 (2002), 2775–2783 |
18. |
Cheng T, Chen DN, Li H, “Wide spectrum denoising (WSD) for superresolution microscopy imaging using compressed sensing and a high-resolution camera”, J Phys Conf Ser, 1651 (2020), 012177 |
19. |
Beier HT, Ibey BL, “Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case”, PLoS ONE, 18:9 (2014), e84614 |
20. |
Cheng T, Wide spectrum denoising method for microscopic images, US Patent 16845110 of July 2, 2022 |
21. |
Lee G, Oh JW, Her NG, Jeong WK, “DeepHCS ++ : Bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening”, Med Image Anal, 70 (2021), 101995 |