RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика

Компьютерная оптика, 2023, том 47, выпуск 5, страницы 673–690 (Mi co1168)

Основанное на методе Монте-Карло моделирование временных функций рассеяния точки и функций чувствительности для мезоскопической время-разрешенной флуоресцентной молекулярной томографии
С. И. Самарин, А. Б. Коновалов, В. В. Власов, И. Д. Соловьев, А. П. Савицкий, В. В. Тучин

Список литературы

1. Gao F, Zhao H-J, Tanikawa Y, Yamada Y, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography”, Opt Express, 14:16 (2006), 7109–7124  crossref
2. Kumar ATN, Raymond SB, Boverman G, Boas DA, Bacskai BJ, “Time resolved fluorescence tomography of turbid media based on lifetime contrast”, Opt Express, 14:25 (2006), 12255–12270  crossref
3. Kumar ATN, Raymond SB, Dunn AK, Bacskai BJ, Boas DA, “A time domain fluorescence tomography system for small animal imaging”, IEEE Trans Med Imaging, 27:8 (2008), 1152–1163  crossref
4. Nothdurft RE, Patwardhan SV, Akers W, Ye Y-P, Achilefu S, Culver JP, “In vivo fluorescence lifetime tomography”, J Biomed Opt, 14:2 (2009), 024004  crossref
5. Gao F, Li J, Zhang L, Poulet P, Zhao H, Yamada Y, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom”, Appl Opt, 49:16 (2010), 3163–3172  crossref
6. Raymond SB, Boas DA, Bacskai BJ, Kumar ATN, “Lifetime-based tomographic multiplexing”, J Biomed Opt, 15:4 (2010), 046011  crossref
7. Chen J, Venugopal V, Intes X, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates”, Biomed Opt Express, 2:4 (2011), 871–886  crossref
8. Gao F, Li J, Zhang W, Yi X, Wang X, Zhang L, Zhou Z, Zhao H, “A CT-analogous scheme for time-domain diffuse fluorescence tomography”, J Xray Sci Technol, 20:1 (2012), 91–105  crossref
9. Rice WL, Kumar ATN, “Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins”, J Biomed Opt, 19:4 (2014), 046005  crossref
10. Hou SS, Rice WL, Bacskai BJ, Kumar ATN, “Tomographic lifetime imaging using combined early- and late-arriving photons”, Opt Lett, 39:5 (2014), 1165–1168  crossref
11. Rice WL, Shcherbakova DM, Verkhusha VV, Kumar ATN, “In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast”, Cancer Res, 75:7 (2015), 1236–1243  crossref
12. Cai C, Zhang L, Zhang J, Bai J, Luo J, “Direct reconstruction method for time-domain fluorescence molecular lifetime tomography”, Opt Lett, 40:17 (2015), 4038–4041  crossref
13. Zhang L, Cai C, Lv Y, Luo J, “Early-photon guided reconstruction method for time-domain fluorescence lifetime tomography”, Chin Opt Lett, 14:7 (2016), 071702  crossref
14. Cai C, Zhang L, Cai W, Zhang D, Lv Y, Luo J, “Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography”, Biomed Opt Express, 7:4 (2016), 1210–1226  crossref
15. Cai C, Cai W, Cheng J, Yang Y, Luo J, “Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography”, J Biomed Opt, 21:12 (2016), 126012  crossref
16. Zhang P, Liu J, Hui H, An Y, Wang K, Yang X, Tian J, “Linear scheme for the direct reconstruction of noncontact time-domain fluorescence molecular lifetime tomography”, Appl Opt, 59:26 (2020), 7961–7967  crossref
17. Cheng J, Zhang P, Cai C, Gao Y, Liu J, Hui H, Tian J, Luo J, “Depth-recognizable time-domain fluorescence molecular tomography in reflective geometry”, Biomed Opt Express, 12:7 (2021), 3806–3818  crossref
18. Becker W, “Fluorescence lifetime imaging – techniques and applications”, J Microsc, 247:Part2 (2012), 119–136  crossref
19. Wang XF, Periasamy A, Herman B, Coleman DM, “Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications”, Crit Rev Anal Chem, 23:5 (1992), 369–395  crossref
20. Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC, “Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications”, J Biomed Opt, 25:7 (2020), 071203  crossref
21. Dmitriev RI, Intes X, Barroso MM, “Luminescence lifetime imaging of three-dimensional biological objects”, J Cell Sci, 134:9 (2021), jcs254763  crossref
22. Konovalov AB, Vlasov VV, Samarin SI, Soloviev ID, Savitsky AP, Tuchin VV, “Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study”, J Biomed Opt, 27:12 (2022), 126001  crossref
23. Abou-Elkacem L, Bjorn S, Doleschel D, Ntziachristos V, Schulz R, Hoffman RM, Kiessling F, Lederle W, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice”, Eur Radiol, 22:9 (2012), 1955–1962  crossref
24. Ozturk MS, Lee VK, Zhao L, Dai G, Intes X, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue”, J Biomed Opt, 18:10 (2013), 100501  crossref
25. Yang F, Ozturk MS, Zhao L, Cong W, Wang G, Intes X, “High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing”, IEEE Trans Biomed Eng, 62:1 (2015), 248–255  crossref  mathscinet
26. Tang Q, Tsytsarev V, Frank A, Wu Y, Chen C-W, Erzurumlu RS, Chen Y, “ In vivo mesoscopic voltage-sensitive dye imaging of brain activation”, Sci Rep, 6 (2016), 25269  crossref
27. Azimipour M, Sheikhzadeh M, Baumgartner R, Cullen PK, Helmstetter FJ, Chang W-J, Pashaie R, “Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation”, J Biomed Opt, 22:1 (2017), 016003  crossref
28. Ozturk MS, Montero MG, Wang L, Chaible LM, Jechlinger M, Prevedel R, “Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics”, Commun Biol, 4:1 (2021), 556  crossref
29. Arridge SR, Schotland JC, “Optical tomography: forward and inverse problems”, Inverse Probl, 25:12 (2009), 123010  crossref  mathscinet  zmath
30. Kuz'min VL, Val'kov AYu, Zubkov LA, “Photon diffusion in random media and anisotropy of scattering in the Henyey-Greenstein and Rayleigh-Gans models”, J Exp Theor Phys, 128:3 (2019), 396–406  crossref
31. Lu Y, Zhu B, Shen H, Rasmussen JC, Wang G, Sevick-Muraca EM, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging”, Phys Med Biol, 55:16 (2010), 4625–4645  crossref
32. Kim HK, Lee JH, Hielscher AH, “PDE-constrained fluorescence tomography with the frequency-domain equation of radiative transfer”, IEEE J Sel Top Quantum Electron, 16:4 (2010), 793–803  crossref
33. Guo H, Hou Y, He X, Yu J, Cheng J, Pu X, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation”, J Innov Opt Health Sci, 7:2 (2014), 1350057  crossref
34. He X, Guo H, Yu J, Zhang X, Hou Y, “Effective and robust approach for fluorescence molecular tomography based on CoSaMP and SP$_3$ model”, J Innov Opt Health Sci, 9:6 (2016), 1650024  crossref
35. Crilly RJ, Cheong W-F, Wilson B, Spears JR, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation”, Appl Opt, 36:25 (1997), 6513–6519  crossref
36. Finlay JC, Foster TH, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model”, Appl Opt, 44:10 (2005), 1917–1933  crossref
37. Haykawa CK, Spanier J, Venugopalan V, “Coupled forward-adjoint Monte Carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues”, SIAM J Appl Math, 68:1 (2007), 253–270  crossref  mathscinet
38. Chen J, Intes X, “Time gated perturbation Monte Carlo for whole body functional imaging in small animals”, Opt Express, 17:22 (2009), 19566–19579  crossref
39. Chen J, Intes X, “Comparison of Monte Carlo methods for fluorescence molecular tomography – computational efficiency”, Med Phys, 38:10 (2011), 5788–5798  crossref
40. Gardner AR, Haykawa CK, Venugopalan V, “Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media”, J Biomed Opt, 19:6 (2014), 065003  crossref
41. Jiang X, Deng Y, Luo Z, Wang K, Lian L, Yang X, Meglinski I, Luo Q, “Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media”, Opt Express, 22:26 (2014), 31948–31965  crossref
42. Yao R, Intes X, Fang Q, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay””, Biomed Opt Express, 9:10 (2018), 4588–4603  crossref
43. Wang L, Jacques SL, Zheng L, “MCML – Monte Carlo modeling of light transport in multi-layered tissues”, Comput Methods Programs Biomed, 47:2 (1995), 131–146  crossref
44. Welch AJ, Gardner C, Richards-Kortum R, Chan E, Criswell G, Pfefer J, Warren S, “Propagation of fluorescent light”, Lasers Surg Med, 21:2 (1997), 166–178  crossref
45. Agostinelli S, et al., “Geant4 – a simulation toolkit”, Nucl Instrum Methods Phys Res A, 506:3 (2003), 250–303  crossref
46. Doronin A, Meglinski I, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics”, Biomed Opt Express, 2:9 (2011), 2461–2469  crossref
47. Ren S, Chen X, Wang H, Qu X, Wang G, Liang J, Tian J, “Molecular Optical Simulation Environment (MOSE): A platform for the simulation of light propagation in turbid media”, PLoS ONE, 8:4 (2013), e61304  crossref
48. Leino AA, Pulkkinen A, Tarvainen T, “ValoMC: a Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue”, OSA Continuum, 2:3 (2019), 957–972  crossref
49. Serov I, John T, Hoogenboom J, “A new effective Monte Carlo midway coupling method in MCNP applied to a well logging problem”, Appl Radiat Isot, 49:12 (1998), 1737–1744  crossref
50. Serov I, John T, Hoogenboom J, “A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport”, Nucl Sci Eng, 133:9 (1999), 55–72  crossref
51. Briesmeister J, MCNP – a general Monte Carlo N-particle transport code, Los Alamos National Laboratory Report, LA-13709-M 2000
52. Kandiev YaZ, Malyshkin GN, Zatsepin OV, Monte Carlo code PRIZMA for calculation of particle transport problems, Proc Joint Int Conf on Supercomputing in Nuclear Applications and Monte Carlo, 2010, CD-ROM  mathscinet
53. Lux I, Koblinger L, Monte-Carlo transport methods: Neutron and photon calculations, CRC Press, Boca Raton, 2000
54. Dorosev AS, Kostjuchenko VI, Samarin SI, “Direct account of experimental data uncertainties in modeling of a 160 MeV proton beam interaction with a multilayer Faraday cup”, Meditsinskaya Fizika, 2:62 (2014), 24–31 (in Russian)
55. Samarin SI, Certificate of Governmental Registration of Computer Program in FIPS No. 2018666251, 2018
56. Born M, Wolf E, Principles of optics, 7th, Cambridge University Press, Cambridge, 1999
57. Sobol IM, Numerical Monte Carlo methods, “Nauka” Publisher, Moscow, 1973 (in Russian)  mathscinet  zmath
58. Henyey IG, Greenstein JI, “Diffuse radiation in the galaxy”, Astrophys J, 93 (1941), 70–83  crossref
59. Akkerman AF, Modeling of charge particle trajectories in matter, “Energoatomizdat” Publisher, Moscow, 1991 (in Russian)
60. Konovalov AB, Vlasov VV, Uglov AS, “Early-photon reflectance fluorescence molecular tomography for small animal imaging: Mathematical model and numerical experiment”, Int J Numer Method Biomed Eng, 37:1 (2021), e3408  crossref  mathscinet
61. Lyubimov VV, Kalintsev AG, Konovalov AB, Lyamtsev OV, Kravtsenyuk OV, Murzin AG, Golubkina OV, Mordvinov GB, Soms LN, Yavorskaya LM, “Application of the photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media”, Phys Med Biol, 47:12 (2002), 2109–2128  crossref
62. Konovalov AB, Vlasov VV, Lyubimov VV, “Statistical characteristics of photon distributions in a semi-infiniteturbid medium: Analytical expressions and their application to optical tomography”, Optik, 124:23 (2013), 6000–6008  crossref
63. Gordon R, Bender R, Herman GT, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography”, J Theor Biol, 29:3 (1970), 471–482  crossref
64. Yu H, Wang G, “Compressed sensing based interior tomography”, Phys Med Biol, 54:9 (2009), 2791–2805  crossref
65. Vlasov VV, Konovalov AB, Kolchugin SV, “Hybrid algorithm for few-views computed tomography of strongly absorbing media: algebraic reconstruction, TV-regularization, and adaptive segmentation”, J Electron Imaging, 27:4 (2018), 043006  crossref  mathscinet
66. Beck A, Teboulle M, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”, SIAM J Imaging Sci, 2:1 (2009), 183–202  crossref  mathscinet  zmath
67. Paige CC, Sanders MA, “LSQR: An algorithm for sparse linear equations and sparse least squares”, ACM Trans Math Softw, 8:1 (1982), 43–71  crossref  mathscinet  zmath


© МИАН, 2025