С. И. Самарин, А. Б. Коновалов, В. В. Власов, И. Д. Соловьев, А. П. Савицкий, В. В. Тучин
|
|
|
Список литературы
|
|
|
1. |
Gao F, Zhao H-J, Tanikawa Y, Yamada Y, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography”, Opt Express, 14:16 (2006), 7109–7124 |
2. |
Kumar ATN, Raymond SB, Boverman G, Boas DA, Bacskai BJ, “Time resolved fluorescence tomography of turbid media based on lifetime contrast”, Opt Express, 14:25 (2006), 12255–12270 |
3. |
Kumar ATN, Raymond SB, Dunn AK, Bacskai BJ, Boas DA, “A time domain fluorescence tomography system for small animal imaging”, IEEE Trans Med Imaging, 27:8 (2008), 1152–1163 |
4. |
Nothdurft RE, Patwardhan SV, Akers W, Ye Y-P, Achilefu S, Culver JP, “In vivo fluorescence lifetime tomography”, J Biomed Opt, 14:2 (2009), 024004 |
5. |
Gao F, Li J, Zhang L, Poulet P, Zhao H, Yamada Y, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom”, Appl Opt, 49:16 (2010), 3163–3172 |
6. |
Raymond SB, Boas DA, Bacskai BJ, Kumar ATN, “Lifetime-based tomographic multiplexing”, J Biomed Opt, 15:4 (2010), 046011 |
7. |
Chen J, Venugopal V, Intes X, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates”, Biomed Opt Express, 2:4 (2011), 871–886 |
8. |
Gao F, Li J, Zhang W, Yi X, Wang X, Zhang L, Zhou Z, Zhao H, “A CT-analogous scheme for time-domain diffuse fluorescence tomography”, J Xray Sci Technol, 20:1 (2012), 91–105 |
9. |
Rice WL, Kumar ATN, “Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins”, J Biomed Opt, 19:4 (2014), 046005 |
10. |
Hou SS, Rice WL, Bacskai BJ, Kumar ATN, “Tomographic lifetime imaging using combined early- and late-arriving photons”, Opt Lett, 39:5 (2014), 1165–1168 |
11. |
Rice WL, Shcherbakova DM, Verkhusha VV, Kumar ATN, “In vivo tomographic imaging of deep-seated cancer using fluorescence lifetime contrast”, Cancer Res, 75:7 (2015), 1236–1243 |
12. |
Cai C, Zhang L, Zhang J, Bai J, Luo J, “Direct reconstruction method for time-domain fluorescence molecular lifetime tomography”, Opt Lett, 40:17 (2015), 4038–4041 |
13. |
Zhang L, Cai C, Lv Y, Luo J, “Early-photon guided reconstruction method for time-domain fluorescence lifetime tomography”, Chin Opt Lett, 14:7 (2016), 071702 |
14. |
Cai C, Zhang L, Cai W, Zhang D, Lv Y, Luo J, “Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography”, Biomed Opt Express, 7:4 (2016), 1210–1226 |
15. |
Cai C, Cai W, Cheng J, Yang Y, Luo J, “Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography”, J Biomed Opt, 21:12 (2016), 126012 |
16. |
Zhang P, Liu J, Hui H, An Y, Wang K, Yang X, Tian J, “Linear scheme for the direct reconstruction of noncontact time-domain fluorescence molecular lifetime tomography”, Appl Opt, 59:26 (2020), 7961–7967 |
17. |
Cheng J, Zhang P, Cai C, Gao Y, Liu J, Hui H, Tian J, Luo J, “Depth-recognizable time-domain fluorescence molecular tomography in reflective geometry”, Biomed Opt Express, 12:7 (2021), 3806–3818 |
18. |
Becker W, “Fluorescence lifetime imaging – techniques and applications”, J Microsc, 247:Part2 (2012), 119–136 |
19. |
Wang XF, Periasamy A, Herman B, Coleman DM, “Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications”, Crit Rev Anal Chem, 23:5 (1992), 369–395 |
20. |
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC, “Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications”, J Biomed Opt, 25:7 (2020), 071203 |
21. |
Dmitriev RI, Intes X, Barroso MM, “Luminescence lifetime imaging of three-dimensional biological objects”, J Cell Sci, 134:9 (2021), jcs254763 |
22. |
Konovalov AB, Vlasov VV, Samarin SI, Soloviev ID, Savitsky AP, Tuchin VV, “Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study”, J Biomed Opt, 27:12 (2022), 126001 |
23. |
Abou-Elkacem L, Bjorn S, Doleschel D, Ntziachristos V, Schulz R, Hoffman RM, Kiessling F, Lederle W, “High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice”, Eur Radiol, 22:9 (2012), 1955–1962 |
24. |
Ozturk MS, Lee VK, Zhao L, Dai G, Intes X, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue”, J Biomed Opt, 18:10 (2013), 100501 |
25. |
Yang F, Ozturk MS, Zhao L, Cong W, Wang G, Intes X, “High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing”, IEEE Trans Biomed Eng, 62:1 (2015), 248–255 |
26. |
Tang Q, Tsytsarev V, Frank A, Wu Y, Chen C-W, Erzurumlu RS, Chen Y, “ In vivo mesoscopic voltage-sensitive dye imaging of brain activation”, Sci Rep, 6 (2016), 25269 |
27. |
Azimipour M, Sheikhzadeh M, Baumgartner R, Cullen PK, Helmstetter FJ, Chang W-J, Pashaie R, “Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation”, J Biomed Opt, 22:1 (2017), 016003 |
28. |
Ozturk MS, Montero MG, Wang L, Chaible LM, Jechlinger M, Prevedel R, “Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics”, Commun Biol, 4:1 (2021), 556 |
29. |
Arridge SR, Schotland JC, “Optical tomography: forward and inverse problems”, Inverse Probl, 25:12 (2009), 123010 |
30. |
Kuz'min VL, Val'kov AYu, Zubkov LA, “Photon diffusion in random media and anisotropy of scattering in the Henyey-Greenstein and Rayleigh-Gans models”, J Exp Theor Phys, 128:3 (2019), 396–406 |
31. |
Lu Y, Zhu B, Shen H, Rasmussen JC, Wang G, Sevick-Muraca EM, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging”, Phys Med Biol, 55:16 (2010), 4625–4645 |
32. |
Kim HK, Lee JH, Hielscher AH, “PDE-constrained fluorescence tomography with the frequency-domain equation of radiative transfer”, IEEE J Sel Top Quantum Electron, 16:4 (2010), 793–803 |
33. |
Guo H, Hou Y, He X, Yu J, Cheng J, Pu X, “Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation”, J Innov Opt Health Sci, 7:2 (2014), 1350057 |
34. |
He X, Guo H, Yu J, Zhang X, Hou Y, “Effective and robust approach for fluorescence molecular tomography based on CoSaMP and SP$_3$ model”, J Innov Opt Health Sci, 9:6 (2016), 1650024 |
35. |
Crilly RJ, Cheong W-F, Wilson B, Spears JR, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation”, Appl Opt, 36:25 (1997), 6513–6519 |
36. |
Finlay JC, Foster TH, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model”, Appl Opt, 44:10 (2005), 1917–1933 |
37. |
Haykawa CK, Spanier J, Venugopalan V, “Coupled forward-adjoint Monte Carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues”, SIAM J Appl Math, 68:1 (2007), 253–270 |
38. |
Chen J, Intes X, “Time gated perturbation Monte Carlo for whole body functional imaging in small animals”, Opt Express, 17:22 (2009), 19566–19579 |
39. |
Chen J, Intes X, “Comparison of Monte Carlo methods for fluorescence molecular tomography – computational efficiency”, Med Phys, 38:10 (2011), 5788–5798 |
40. |
Gardner AR, Haykawa CK, Venugopalan V, “Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media”, J Biomed Opt, 19:6 (2014), 065003 |
41. |
Jiang X, Deng Y, Luo Z, Wang K, Lian L, Yang X, Meglinski I, Luo Q, “Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media”, Opt Express, 22:26 (2014), 31948–31965 |
42. |
Yao R, Intes X, Fang Q, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay””, Biomed Opt Express, 9:10 (2018), 4588–4603 |
43. |
Wang L, Jacques SL, Zheng L, “MCML – Monte Carlo modeling of light transport in multi-layered tissues”, Comput Methods Programs Biomed, 47:2 (1995), 131–146 |
44. |
Welch AJ, Gardner C, Richards-Kortum R, Chan E, Criswell G, Pfefer J, Warren S, “Propagation of fluorescent light”, Lasers Surg Med, 21:2 (1997), 166–178 |
45. |
Agostinelli S, et al., “Geant4 – a simulation toolkit”, Nucl Instrum Methods Phys Res A, 506:3 (2003), 250–303 |
46. |
Doronin A, Meglinski I, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics”, Biomed Opt Express, 2:9 (2011), 2461–2469 |
47. |
Ren S, Chen X, Wang H, Qu X, Wang G, Liang J, Tian J, “Molecular Optical Simulation Environment (MOSE): A platform for the simulation of light propagation in turbid media”, PLoS ONE, 8:4 (2013), e61304 |
48. |
Leino AA, Pulkkinen A, Tarvainen T, “ValoMC: a Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue”, OSA Continuum, 2:3 (2019), 957–972 |
49. |
Serov I, John T, Hoogenboom J, “A new effective Monte Carlo midway coupling method in MCNP applied to a well logging problem”, Appl Radiat Isot, 49:12 (1998), 1737–1744 |
50. |
Serov I, John T, Hoogenboom J, “A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport”, Nucl Sci Eng, 133:9 (1999), 55–72 |
51. |
Briesmeister J, MCNP – a general Monte Carlo N-particle transport code, Los Alamos National Laboratory Report, LA-13709-M 2000 |
52. |
Kandiev YaZ, Malyshkin GN, Zatsepin OV, Monte Carlo code PRIZMA for calculation of particle transport problems, Proc Joint Int Conf on Supercomputing in Nuclear Applications and Monte Carlo, 2010, CD-ROM |
53. |
Lux I, Koblinger L, Monte-Carlo transport methods: Neutron and photon calculations, CRC Press, Boca Raton, 2000 |
54. |
Dorosev AS, Kostjuchenko VI, Samarin SI, “Direct account of experimental data uncertainties in modeling of a 160 MeV proton beam interaction with a multilayer Faraday cup”, Meditsinskaya Fizika, 2:62 (2014), 24–31 (in Russian) |
55. |
Samarin SI, Certificate of Governmental Registration of Computer Program in FIPS No. 2018666251, 2018 |
56. |
Born M, Wolf E, Principles of optics, 7th, Cambridge University Press, Cambridge, 1999 |
57. |
Sobol IM, Numerical Monte Carlo methods, “Nauka” Publisher, Moscow, 1973 (in Russian) |
58. |
Henyey IG, Greenstein JI, “Diffuse radiation in the galaxy”, Astrophys J, 93 (1941), 70–83 |
59. |
Akkerman AF, Modeling of charge particle trajectories in matter, “Energoatomizdat” Publisher, Moscow, 1991 (in Russian) |
60. |
Konovalov AB, Vlasov VV, Uglov AS, “Early-photon reflectance fluorescence molecular tomography for small animal imaging: Mathematical model and numerical experiment”, Int J Numer Method Biomed Eng, 37:1 (2021), e3408 |
61. |
Lyubimov VV, Kalintsev AG, Konovalov AB, Lyamtsev OV, Kravtsenyuk OV, Murzin AG, Golubkina OV, Mordvinov GB, Soms LN, Yavorskaya LM, “Application of the photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media”, Phys Med Biol, 47:12 (2002), 2109–2128 |
62. |
Konovalov AB, Vlasov VV, Lyubimov VV, “Statistical characteristics of photon distributions in a semi-infiniteturbid medium: Analytical expressions and their application to optical tomography”, Optik, 124:23 (2013), 6000–6008 |
63. |
Gordon R, Bender R, Herman GT, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography”, J Theor Biol, 29:3 (1970), 471–482 |
64. |
Yu H, Wang G, “Compressed sensing based interior tomography”, Phys Med Biol, 54:9 (2009), 2791–2805 |
65. |
Vlasov VV, Konovalov AB, Kolchugin SV, “Hybrid algorithm for few-views computed tomography of strongly absorbing media: algebraic reconstruction, TV-regularization, and adaptive segmentation”, J Electron Imaging, 27:4 (2018), 043006 |
66. |
Beck A, Teboulle M, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”, SIAM J Imaging Sci, 2:1 (2009), 183–202 |
67. |
Paige CC, Sanders MA, “LSQR: An algorithm for sparse linear equations and sparse least squares”, ACM Trans Math Softw, 8:1 (1982), 43–71 |