С. О. Степаненко, В. В. Евдокимова, М. В. Петров, Р. В. Скиданов, А. В. Никоноров
|
|
|
Список литературы
|
|
|
1. |
Chen MK, Liu X, Sun Y, Tsai DP, “Artificial intelligence in meta-optics”, Chem Rev, 122:19 (2022), 15356–15413 |
2. |
Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces”, Optica, 4:1 (2017), 139–152 |
3. |
Banerji S, et al., “Imaging with flat optics: metalenses or diffractive lenses?”, Optica, 6:6 (2019), 805–810 |
4. |
Nikonorov A, Evdokimova V, Petrov M, Yakimov P, Bibikov S, Yuzifovich Y, Skidanov R, Kazanskiy N, “Deep learning-based imaging using single-lens and multi-aperture diffractive optical systems”, 2019 IEEE/CVF Int Conf on Computer Vision Workshop (ICCVW), 2019, 3969–3977 |
5. |
Kazanskii NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG, “Formation of images using multilevel diffractive lens”, Computer Optics, 38:3 (2014), 425–434 |
6. |
Nikonorov A, Skidanov R, Fursov V, Petrov M, Bibikov S, Yuzifovich Y, “Fresnel lens imaging with post-capture image processing”, 2015 IEEE Conf on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, 33–41 |
7. |
Nikonorov A, Petrov M, Bibikov S, Yakimov P, Kutikova V, Yuzifovich Y, Morozov A, Skidanov R, Kazanskiy N, “Toward ultralightweight remote sensing with harmonic lenses and convolutional neural networks”, IEEE J Sel Top Appl Earth Obs Remote Sens, 11:9 (2018), 3338–3348 |
8. |
Nikonorov AV, Skidanov RV, Kutikova VV, Petrov MV, Alekseev AP, Bibikov SA, Kazanskiy NL, “Towards multi-aperture imaging using diffractive lens”, Proc SPIE, 11146 (2019), 111460Y |
9. |
Nikonorov A, Petrov M, Bibikov S, Yuzifovich Y, Yakimov P, Kazanskiy N, Skidanov R, Fursov V, “Comparative evaluation of deblurring techniques for fresnel lens computational imaging”, 2016 23rd Int Conf on Pattern Recognition (ICPR), 2016, 775-780 |
10. |
Peng Y, Fu Q, Amata H, Su Sh, Heide F, Heidrich W, “Computational imaging using lightweight diffractive-refractive optics”, Opt Express, 23:24 (2015), 31393–31407 |
11. |
Skidanov R, Strelkov Y, Volotovsky S, Blank V, Ganchevskaya S, Podlipnov V, Ivliev N, Kazanskiy N, “Compact imaging systems based on annular harmonic lenses”, Sensors, 20:14 (2020), 3914 |
12. |
Sales TRM, Morris GM, “Diffractive-refractive behavior of kinoform lenses”, Appl Opt, 36:1 (1997), 253–257 |
13. |
Mohammad N, Meem M, Shen B, Wang P, Menon R, “Broadband imaging with one planar diffractive lens”, Sci Rep, 8 (2018), 2799 |
14. |
Kim G, Domínguez-Caballero JA, Menon R, “Design and analysis of multi-wavelength difractive optics”, Opt Express, 20:3 (2012), 2814–2823 |
15. |
Blank V, Skidanov R, Doskolovich L, Kazanskiy N, “Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index”, Sensors, 21:22 (2021), 7694 |
16. |
Blank VA, Skidanov RV, Doskolovich LL, “Investigation of a spectral lens for the formation of a normalized difference vegetation index NDVI0.705”, J Opt Technol, 89:3 (2022), 137–141 |
17. |
Doskolovich LL, Golub MA, Kazanskiy NL, Khramov AG, Pavelyev VS, Seraphimovich PG, Soifer VA, Volotovskiy SG, “Software on diffractive optics and computer generated holograms”, Proc. SPIE, 2363 (1995), 278–284 |
18. |
Kazanskiy NL, “Modeling diffractive optics elements and devices”, Proc SPIE, 10774 (2018), 107740O |
19. |
Kazanskiy NL, “Research & Education Center of Diffractive Optics”, Proc SPIE, 8410 (2012), 84100R |
20. |
Kazanskiy NL, Skidanov RV, “Technological line for creation and research of diffractive optical elements”, Proc SPIE, 11146 (2019), 111460W |
21. |
Zhang Y, Li Ku, Li K, Wang L, Zhong B, Fu Y, “Image super-resolution using very deep residual channel attention networks”, Computer Vision – ECCV 2018, eds. Ferrari V, Hebert M, Sminchisescu C, Weiss Y, Springer Nature Switzerland AG, Cham, 2018, 294–310 |
22. |
Kim J, Lee JK, Lee KM, “Accurate image super-resolution using very deep convolutional networks”, 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2016, 1646–1654 |
23. |
Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y, “Residual dense network for image super-resolution”, 2018 IEEE/CVF Conf on Computer Vision and Pattern Recognition, 2018, 2472–2481 |
24. |
Wang L, Wang Y, Dong X, Xu Q, Yang J, An W, Guo Y, “Unsupervised degradation representation learning for blind superresolution”, 2021 IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR), 2021, 10576–10585 |
25. |
Wang Z, Chen J, Hoi SCH, “Deep learning for image super-resolution: A survey”, IEEE Trans Pattern Anal Mach Intell, 43:10 (2020), 3365–3387 |
26. |
Dong C, Loy CC, He K, Tang X, “Learning a deep convolutional network for image super-resolution”, Computer Vision – ECCV 2014, eds. Fleet D, Pajdla T, Schiele B, Tuytelaars T, Springer International Publishing Switzerland, Cham, 2014, 184–199 |
27. |
Zhang K, Zuo W, Zhang L, “Learning a single convolutional super-resolution network for multiple degradations”, 2018 IEEE/CVF Conf on Computer Vision and Pattern Recognition, 2018, 3262–3271 |
28. |
Wang X, Xie L, Dong C, Shan Y, “Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data”, IEEE/CVF Int Conf on Computer Vision Workshops (ICCVW), 2021, 1904–1914 |
29. |
Soh JW, Cho S, Cho NI, “Meta-transfer learning for zero-shot super-resolution”, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 3513–3522 |
30. |
Evdokimova VV, Petrov MV, Klyueva MA, Zybin EY, Kosianchuk VV, Mishchenko IB, Novikov VM, Selvesiuk NI, Ershov EI, Ivliev NA, Skidanov RV, Kazanskiy NL, Nikonorov AV, “Deep learning-based video stream reconstruction in mass production diffractive optical systems”, Computer Optics, 45:1 (2021), 130–141 |
31. |
Ivliev N, Evdokimova V, Podlipnov V, Petrov M, Ganchevskaya S, Tkachenko I, Abrameshin D, Yuzifovich Y, Nikonorov A, Skidanov R, Kazanskiy N, Soifer V, “First Earth-imaging CubeSat with harmonic diffractive lens”, Remote Sens, 14:9 (2022), 2230 |
32. |
Ronneberger O, “U-Net: Convolutional networks for biomedical image segmentation”, Medical image computing and computerassisted intervention – MICCAI, eds. Navab N, Hornegger J, Wells WM, Frangi AF, Springer, New York, Dordrecht, London, 2015, 234–241 |
33. |
Dun X, Ikoma H, Wetzstein G, Wang Z, Cheng X, Peng Y, “Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging”, Optica, 7:8 (2020), 913–922 |
34. |
Peng Y, Sun Q, Dun X, Wetzstein G, Heidrich W, Heide F, “Learned large field-of-view imaging with thin-plate optics”, ACM Trans Graph, 38:6 (2019), 219 |
35. |
Foi A, Trimeche M, Katkovnik V, Egiazarian K, “Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data”, IEEE Trans Image Process, 17:10 (2008), 1737–1754 |
36. |
Guo S, Yan Z, Zhang K, Zuo W, Zhang L, “Toward convolutional blind denoising of real photographs”, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 1712–1722 |
37. |
Do more with less data, 2023 https://albumentations.ai/ |
38. |
Ying Z, Li G, Ren Y, Wang R, Wang W, “A new low-light image enhancement algorithm using camera response model”, IEEE Int Conf on Computer Vision Workshops (ICCVW), 2017, 3015–3022 |
39. |
Karpeev SV, Alferov SV, Khonina SN, Kudryashov SI, “Study of the broadband radiation intensity distribution formed by diffractive optical elements”, Computer Optics, 38:4 (2014), 689–694 |