|
|
|
Список литературы
|
|
|
1. |
Petillot YR, Antonelli G, Casalino G, Ferreira F, “Underwater robots: From remotely operated vehicles to intervention-autonomous underwater vehicles”, IEEE Robot Autom Mag, 26:2 (2019), 94–101 |
2. |
Ortiz A, Simó M, Oliver G, “A vision system for an underwater cable tracker”, Mach Vis Appl, 13:3 (2002), 129–140 |
3. |
Zhang H, Zhang S, Wang Ya, Liu Yu, Yang Ya, Zhou T, Bian H, “Subsea pipeline leak inspection by autonomous underwater vehicle”, Appl Ocean Res, 107:4 (2021), 102321 |
4. |
Dumke I, Nornes SM, Purser A, Marcon Y, Ludvigsen M, Ellefmo SL, Johnsen G, Søreide F, “First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules”, Remote Sens Environ, 209 (2018), 19–30 |
5. |
Wu TC, Chi YC, Wang HY, et al., “Blue laser diode enables underwater communication at 12.4 Gbps”, Sci Rep, 7 (2017), 40480 |
6. |
Reynolds RA, Stramski D, Neukermans G, “Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition”, Limnol Oceanogr, 61:5 (2016), 1869–1890 |
7. |
Loisel H, Stramski D, Dessailly D, Jamet C, Li L, Reynolds RA, “An inverse model for estimating the optical absorption and backscattering coefficients of seawater from remote-sensing reflectance over a broad range of oceanic and coastal marine environments”, J Geophys Res Oceans, 123:3 (2018), 2141–2171 |
8. |
Mosyagin GM, Koluchkin VY, The theory of optical-electronic systems, Publishing House of the Bauman Moscow State Technical University, Moscow, 2020 (in Russian) |
9. |
McGlamery BL, “A computer model for underwater camera systems”, Proc SPIE, 208 (1980), 221–231 |
10. |
Jaffe JS, “Computer modeling and the design of optimal underwater imaging systems”, IEEE J Ocean Eng, 15:2 (1990), 101–111 |
11. |
Shifrin KS, Introduction to ocean optics, “Gidrometeoizdat” Publisher, Leningrad, 1983 (in Russian) |
12. |
Levin IM, “Promising lines of studying the ocean by optical remote sensing metods”, Fundamental and Applied Hydrophysics, 1 (2008), 14–47 (in Russian) |
13. |
Kozintcev VI, Orlov VM, Belov ML, Optical electronic systems for ecological monitoring of the nature environment, Publishing House of the Bauman Moscow State Technical University, Moscow, 2002 (in Russian) |
14. |
Karasik VE, Orlov VM, Location laser vision systems, Publishing House of the Bauman Moscow State Technical University, Moscow, 2013 (in Russian) |
15. |
Kostylev NM, Kolyuchkin VYa, Stepanov RO, “A mathematical model of laser radiation propagation in seawater”, Optics Spectrosc, 127:4 (2019), 612–617 |
16. |
Lisenko AA, Shamanaev VS, “Statistical estimates of the effect of the sea water scattering phase function on the characteristics of airborne hydrooptical lidar signals”, Russian Physics Journal, 64:2 (2021), 1373–1380 |
17. |
Goodman JW, Introduction to Fourier optics, McGraw-Hill, 1996 |
18. |
Rizzini DL, Kallasi F, Aleotti J, Oleari J, Caselli S, “Integration of a stereo vision system into an autonomous underwater vehicle for pipe manipulation tasks”, Comput Electr Eng, 58 (2017), 560–571 |
19. |
Gulina YS, Koliuchkin VYa, Trofimov NE, “Mathematical model of human visual system”, Optical Memory & Neural Networks (Information Optics), 27:4 (2018), 219–234 |
20. |
Gulina YS, Kolyuchkin VYa, “Experimental investigations of a model of the human visual system”, Optics Spectrosc, 127:4 (2019), 675–683 |
21. |
Gulina YS, Kolyuchkin VYa, “Method for calculating detection probability of objects images by a human”, Optical Memory and Neural Networks, 29:3 (2020), 209–219 |
22. |
Gulina YS, Kolyuchkin VYa, “Method for calculating recognition probability of objects images by a human”, Optical Memory and Neural Networks, 30:2 (2021), 172–179 |