A. V. Dobshik, S. K. Verbitskiy, I. A. Pestunov, K. M. Sherman, Yu. N. Sinyavskiy, A. A. Tulupov, V. B. Berikov
|
|
|
Список литературы
|
|
|
1. |
Tsao CW, Ada AW, Almarzooq ZI, et al., “Heart disease and stroke statistics – 2022 update: A report from the American Heart Association”, Circulation, 145:8 (2022), e153-e639 |
2. |
Shafaat O, Bernstock JD, Shafaat A, Yedavalli VS, Elsayed G, Gupta S, Sotoudeh E, Sair HI, Yousem DM, Sotoudehg H, “Leveraging artificial intelligence in ischemic stroke imaging”, J Neuroradiology, 49:4 (2022), 343–351 |
3. |
Fartakov EI, Tarkova AR, Kretov EI, Lomivorotov VV, Zykov IS, “Possibilities and prospects of hypothermia in the treatment of ischemic stroke”, Patologiya Krovoobrashcheniya i Kardiokhirurgiya, 23:1 (2019), S18–S25 (in Russian) |
4. |
Bal S, Bhatia R, Menon BK, Shobha N, Puetz V, Dzialowski I, Modi J, Goyal M, Hill MD, Smith EE, Demchuk AM, “Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke”, Int J Stroke, 10:1 (2012), 55–60 |
5. |
Sui B, Gao P, “Imaging evaluation of acute ischemic stroke”, J Int Med Res, 48:1 (2020), 0300060518802530 |
6. |
Simonsen CZ, Leslie-Mazwi TM, Thomalla G, “Which imaging approach should be used for stroke of unknown time of onset?”, Stroke, 52:1 (2021), 373–380 |
7. |
Jadhav AP, Desai SM, Liebeskind DS, Wechsler LR, “Neuroimaging of acute stroke”, Neurol Clin, 38:1 (2020), 185–199 |
8. |
Potter CA, Vagal AS, Goyal M, Nunez DB, Leslie-Mazwi TM, Lev MH, “CT for treatment selection in acute ischemic stroke: A code stroke primer”, Radiographics, 39:6 (2019), 1717–1738 |
9. |
Kamalian S, Lev MH, “Stroke imaging”, Radiol Clin N Am, 57:4 (2019), 717–732 |
10. |
Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, Psychogios M, Chapot R, van der Lugt A, Liu J, Yang P, Agid R, Hacke W, Walker M, Fischer U, Asdaghi N, McTaggart R, Srivastava P, Nogueira RG, Moret J, Saver JL, Hill MD, Dippel D, Fisher M, “Challenging the ischemic core concept in acute ischemic stroke imaging”, Stroke, 51:10 (2020), 3147–3155 |
11. |
Mangesius S, Janjic T, Steiger R, Haider L, Rehwald R, Knoflach M, Widmann G, Gizewski E, Grams A, “Dual-energy computed tomography in acute ischemic stroke: State-of-the-art”, Eur Radiol, 31:6 (2021), 4138–4147 |
12. |
Song K, Guan M, Li W, Jing Z, Xie X, Shi C, Liang J, Qiao H, Huang L, “Acute ischemic stroke patients with diffusion-weighted imaging – Alberta stroke program early computed tomography score $\leq$ 5 can benefit from endovascular treatment: A single-center experience and literature review”, Neuroradiology, 61:4 (2019), 451–459 |
13. |
Provost C, Soudant M, Legrand L, Hassen WB, Xie Y, Soize S, Bourcier R, Benzakoun J, Edjlali M, Boulouis G, Raoult H, Guillemin F, Naggara O, Bracard S, Oppenheim C, “Magnetic resonance imaging or computed tomography before treatment in acute ischemic stroke”, Stroke, 50:3 (2019), 659–664 |
14. |
Puig J, Shankar J, Liebeskind D, Terceño M, Nael K, Demchuk AM, Menon B, Dowlatshahi D, Leiva-Salinas C, Wintermark M, Thomalla G, Silva Y, Serena J, Pedraza S, Essig M, “From “Time is brain” to "Imaging is brain": A paradigm shift in the management of acute ischemic stroke”, J Neuroimaging, 30:5 (2020), 562–571 |
15. |
Pulli B, Heit JJ, Wintermark M, “Computed tomography-based imaging algorithms for patient selection in acute ischemic stroke”, Neuroimag Clin N Am, 31:2 (2021), 235–250 |
16. |
National Institute of Neurological Disorders, Stroke rt-PA Stroke Study Group, “Tissue plasminogen activator for acute ischemic stroke”, New Engl J Med, 333:24 (1995), 1581–1587 |
17. |
Zhang X-H, Liang H-M, “Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke”, Medicine (Baltimore), 98:30 (2019), e16360 |
18. |
Brazzelli M, Sandercock PAG, Chappell FM, Celani MG, Righetti E, Arestis N, Wardla JM, Deeks JJ, “Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms”, Cochrane DB Syst Rev, 4 (2009), CD007424 |
19. |
Prokhorikhin A, Baystrukov V, Boykov A, Malaev D, Tarkova A, Shayakhmetova S, Grishkov A, Kazancev A, Shigaev V, Kokh V, Avetisyan M, Umerenkov D, Kretov E, “Neural network-based system of acute stroke non-contrast computed tomography diagnostics: A comparative study”, Russ Electron J Radiol, 10:3 (2020), 36–45 |
20. |
Muhd Suberi AA, Zakaria WNW, Tomari R, Nazari A, Hj Mohd MN, Nik Fuad NF, “Deep transfer learning application for automated ischemic classification in posterior fossa CT images”, Int J Adv Comp Sci Appl, 10:8 (2019), 459–465 |
21. |
Nishio M, Koyasu S, Noguchi S, Kiguchi T, Nakatsu K, Akasaka T, Yamada H, Itoh K, “Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model”, Comput Meth Prog Bio, 196 (2020), 105711 |
22. |
Lisowska A, O'Neil A, Dilys V, Daykin M, Beveridge E, Muir K, McLaughlin S, Poole I, “Context-aware convolutional neural networks for stroke sign detection in non-contrast CT scans”, Medical image understanding and analysis (21st Annual Conference, MIUA 2017, Edinburgh, UK, July 11–13, 2017, Proceedings), eds. Hernández MV, González-Castro V, Springer International Publishing AG, Cham, Switzerland, 2017, 494–505 |
23. |
Kuang H, Najm M, Chakraborty D, Maraj N, Sohn SI, Goyal M, Hill MD, Demchuk AM, Menon BK, Qiu W, “Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning”, Am J Neuroradiol, 40:1 (2019), 33–38 |
24. |
Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar Lima D, “New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities”, Comput Meth Prog Bio, 148 (2017), 27–43 |
25. |
Peixoto SA, Rebouças Filho PP, “Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on the frequency domain”, Comput Electr Eng, 71 (2018), 398–407 |
26. |
Kuang H, Qiu W, Najm M, Dowlatshahi D, Mikulik R, Poppe AY, Puig J, Castellanos M, Sohn SI, Ahn SH, Calleja A, Jin A, Asil T, Asdaghi N, Field TS, Coutts S, Hill MD, Demchuk AM, Goyal M, Menon BK, “INTERRSeCT Collaborators. Validation of an automated ASPECTS method on non-contrast computed tomography scans of acute ischemic stroke patients”, Int J Stroke, 15:5 (2020), 528–534 |
27. |
Sirsat MS, Fermé E, Câmara J, “Machine learning for brain stroke: A review”, J Stroke Cerebrovasc, 29:10 (2020), 105162 |
28. |
Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, Barua P, Palmer EE, Cheong KH, Chan WY, Ciaccio EJ, Acharya UR, “A review on computer aided diagnosis of acute brain stroke”, Sensors, 21:24 (2021), 8507 |
29. |
Murray NM, Unberath M, Hager GD, Hui FK, “Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review”, J Neurointerv Surg, 12:2 (2020), 156–164 |
30. |
Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH, “Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge”, Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, eds. Crimi A, Bakas S, Kuijf H, Menze B, Reyes M, Springer International Publishing AG, Cham, 2018, 287–297 |
31. |
Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B, “Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI”, Proc MICCAI Brain Lesion Workshop, 13 (2015), 46 |
32. |
Ronneberger O, Fischer P, Brox T, “U-net: Convolutional networks for biomedical image segmentation”, Medical image computing and computer-assisted intervention – MICCAI 2015, eds. Navab N, Hornegger J, Wells WM, Frangi AF, Springer International Publishing, Cham, Switzerland, 2015, 234–241 |
33. |
Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH, “nnUNet: A self-configuring method for deep learning-based biomedical image segmentation”, Nat Methods, 18:2 (2021), 203–211 |
34. |
Woo I, Lee A, Jung SC, Lee H, Kim N, Cho SJ, Kim D, Lee J, Sunwoo L, Kang DW, “Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms”, Korean J Radiol, 20:8 (2019), 1275–1284 |
35. |
Clèrigues A, Valverde S, Bernal J, Freixenet J, Oliver A, Lladó X, “Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks”, Comput Biol Med, 115 (2019), 103487 |
36. |
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O, “3D U-Net: learning dense volumetric segmentation from sparse annotation”, Medical image computing and computer-assisted intervention – MICCAI 2016. Pt II, eds. Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, Springer International Publishing AG, Cham, 2016, 424–432 |
37. |
Milletari F, Navab N, Ahmadi SA, “-net: Fully convolutional neural networks for volumetric medical image segmentation”, 2016 Fourth Int Conf 3D Vision, 2016, 565–571 |
38. |
Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B, “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation”, Med Image Anal, 36 (2017), 61–78 |
39. |
Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH, “No new-net”, Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, v. Pt II, eds. Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, Springer Nature Switzerland AG, Cham, 2019, 234–244 |
40. |
Tuladhar A, Schimert S, Rajashekar D, Kniep HC, Fiehler J, Forkert ND, “Automatic segmentation of stroke lesions in non-contrast computed tomography datasets with convolutional neural networks”, IEEE Access, 8 (2020), 94871–94879 |
41. |
Li Y, Fan Y, “DeepSEED: 3D Squeeze-and-Excitation encoder-decoder convolutional neural networks for pulmonary nodule detection”, Proc IEEE Int Symp Biomed Imaging, 2020, 1866–1869 |
42. |
Abramova V, Clèrigues A, Quiles A, Figueredo DG, Silva Y, Pedraza S, Oliver A, Lladó X, “Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks”, Comput Med Imag Grap, 90 (2021), 101908 |
43. |
Roy AG, Navab N, Wachinger C, “Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks”, Medical image computing and computer assisted intervention – MICCAI 2018, v. Pt I, eds. Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, Springer Nature Switzerland AG, Cham, 2018, 421–429 |
44. |
Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth RH, Xu D, “UNETR: Transformers for 3d medical image segmentation”, IEEE Wint Conf Appl, 2022, 1748–1758 |
45. |
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy FM, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R, “3D Slicer as an image computing platform for the quantitative imaging network”, Magn Reson Imaging, 30:9 (2012), 1323–1341 |
46. |
Lev MH, Gonzalez RG, “CT angiography and CT perfusion imaging”, Brain mapping: The methods, 2nd, eds. Toga AW, Mazziotta JC, Academic Press, Amsterdam, 2002, 427–484 |
47. |
Ioffe S, Szegedy C, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, Int Conf Mach Learn, 37 (2015), 448–456 |
48. |
He K, Zhang X, Ren S, Sun J, “Deep residual learning for image recognition”, Proc CVPR IEEE, 2016, 770–778 |
49. |
Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations”, Deep learning in medical image analysis and multimodal learning for clinical decision support, eds. Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, Bradley A, Greenspan H, Papa JP, Madabhushi A, Nascimento JC, Cardoso JS, Belagiannis V, Lu Z, Springer International Publishing AG, Cham, 2017, 240–248 |
50. |
Kingma DP, Ba J, Adam: A method for stochastic optimization, 2017, arXiv: 1412.6980 |
51. |
Pérez-García F, Sparks R, Ourselin S, “TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning”, Comput Meth Prog Bio, 208 (2021), 106236 |