RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика

Компьютерная оптика, 2023, том 47, выпуск 5, страницы 816–823 (Mi co1183)

Непараметрическое оценивание количества классов, отличающихся средней яркостью, на тепловизионных изображениях
А. Н. Галянтич, М. А. Райфельд

Список литературы

1. Chochia PA, “Image segmentation based on analysis of distances in feature space”, Optoelectron Instrum Data Process, 50:6 (2015), 613–624  crossref
2. Aivazyan SA, Buchstaber VM, Yenyukov IS, Meshalkin LD, Applied statistics: classification and reduction of dimensionality, 'Finansy i Statistica' Publisher, Moscow, 1989 (in Russian)  mathscinet  zmath
3. Sezgin M, Sankur B, “Survey over image thresholding techniques and quantitative performance evaluation”, J Electron Imaging, 13:1 (2004), 146–168  crossref
4. Kittler J, Illingworth J, “Minimum error thresholding”, Pattern Recogn, 19:1 (1986), 41–47  crossref  mathscinet
5. Devijver PA, Kittler J, Pattern recognition: A statistical approach, Prentice Hall, Englewood Cliffs, NJ, 1982  mathscinet  zmath
6. Akaike H, “A new look at the statistical model identification”, IEEE Trans Automat Contr, 6:1 (1974), 716–723  crossref  mathscinet
7. Schwarz G, “Estimating the dimension of a model”, Annals of Statistics, 6:2 (1978), 461–464  crossref  mathscinet  zmath
8. Podrezov RV, Raifeld MA, “Nonparametric method of estimating number of classes in image segmentation”, Optoelectron Instrum Data Process, 56:3 (2020), 280–287  crossref
9. Andrukovich PF, Application of the principal component method in practical research, “Izdatel'stvo Moskovskogo universiteta” Publisher, Moscow, 1973 (in Russian)
10. James AT, “The distribution of the latent roots of the covariance matrix”, Ann Math Statist, 31:1 (1960), 151–158  crossref  mathscinet  zmath
11. Anderson GA, “An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix”, Ann Math Statist, 36:4 (1965), 1153–1173  crossref  mathscinet  zmath
12. Kim J-O, Mueller CW, Factor analysis: Statistical methods and practical issues, Sage Publications Inc, Newbury Park, CA, 1978
13. Cangelosi R, Goriely A, “Component retention in principal component analysis with application to cDNA microarray data”, Biology Direct, 2 (2007), 2  crossref
14. Akaike H, “A Bayesian analysis of the minimum AIC procedure”, Ann Inst Statist Math, 30:A (1978), 9–14  crossref  mathscinet  zmath
15. Korolev VY, EM-algorithm, its modifications and their application to the problem of separation of mixtures of probability distributions, IPI RAN Publisher, Moscow, 2007


© МИАН, 2025