|
|
|
Список литературы
|
|
|
1. |
Rottier JB, “Artificial intelligence: reinforcing the place of humans in our healthcare system”, La Revue du Praticien, 68:10 (2018), 1150–1151 |
2. |
Fourcade A, Khonsari RH, “Deep learning in medical image analysis: A third eye for doctors”, J Stomatol Oral Maxillofac Surg, 120:4 (2019), 279–288 |
3. |
Gao A, et al., “Progress in robotics for combating infectious diseases”, Sci Robot, 6:52 (2021), eabf1462 |
4. |
Forecast of scientific and technological development of the Russian Federation until 2030, 2022 http://static.government.ru/media/files/41d4b737638b91da2184.pdf |
5. |
Trinh M, Ghassibi M, Lieberman R, “Artificial intelligence in retina”, Adv Ophthalmol Optom, 6:1 (2021), 175–185 |
6. |
Vorobieva IV, Merkushenkova DA, “Diabetic retinopathy in patients with type 2 Diabetes Mellitus. Epidemiology, a modern view of pathogenesis”, Ophthalmology, 9:4 (2012), 18–21 |
7. |
Dedov II, Shestakova MV, Galstyan GR, “Prevalence of type 2 Diabetes Mellitus in the adult population of Russia (NATION study)”, Diabetes Mellit, 19:2 (2016), 104–112 |
8. |
Tan GS, Cheung N, Simo R, “Diabetic macular edema”, Lancet Diab Endocrinol, 5:2 (2017), 143–155 |
9. |
Amirov AN, Abdulaeva EA, Minkhuzina EL, “Diabetic macular edema: Epidemiology, pathogenesis, diagnosis, clinical presentation, and treatment”, Kazan Medical Journal, 96:1 (2015), 70–74 |
10. |
Doga AV, Kachalina GF, Pedanova EK, Buryakov DA, “Modern diagnostic and treatment aspects of diabetic macular edema”, Ophthalmology Diabetes, 17:4 (2014), 51–59 (in Russian) |
11. |
Bratko GV, Chernykh VV, Sazonova OV, “On early diagnostics and the occurence rate of diabetic macular edema and identification of diabetes risk groups”, Siberian Scientific Medical Journal, 35:1 (2015), 33–36 |
12. |
Wong TY, Liew G, Tapp RJ, “Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies”, Lancet, 371:9614 (2008), 736–743 |
13. |
Acharya UR, Ng EY, Tan JH, Sree SV, Ng KH, “An integrated index for the identification of diabetic retinopathy stages using texture parameters”, J Med Syst, 36:3 (2012), 2011–2020 |
14. |
Astakhov YuS, Shadrichev FE, Krasavina MI, Grigorieva NN, “Modern approaches to the treatment of diabetic macular edema”, Ophthalmological Statements, 4 (2009), 59–69 |
15. |
Zamytsky EA, Zolotarev AV, Karlova EV, Zamytsky PA, “Analysis of the coagulates intensity in laser treatment of diabetic macular edema in a Navilas robotic laser system”, Saratov Journal of Medical Scientific Research, 13:2 (2017), 375–378 |
16. |
Zamytskiy EA, Zolotarev AV, Karlova EV, “Comparative quantitative assessment of the placement and intensity of laser spots for treating diabetic macular edema”, Russian Journal of Clinical Ophthalmology, 21:2 (2021), 58–62 |
17. |
Kotsur TV, Izmailov AS, “The effectiveness of laser coagulation in the macula and high-density microphotocoagulation in the treatment of diabetic maculopathy”, Ophthalmological Statements, 9:4 (2016), 43–45 |
18. |
Whiting DR, Guariguata L, Weil C, Shaw J, “IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030”, Diabetes Res Clin Pract, 94:3 (2011), 311–321 |
19. |
Shirokanev AS, Kirsh DV, Ilyasova NYu, Kupriyanov AV, “Investigation of algorithms for coagulate arrangement in fundus images”, Computer Optics, 42:4 (2018), 712–721 |
20. |
Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA, “Method for selection macular edema region using optical coherence tomography data”, Computer Optics, 44:2 (2020), 250–258 |
21. |
Ilyasova NYu, Shirokanev AS, Kupriyanov AV, Paringer RA, “Technology of intellectual feature selection for a system of automatic formation of a coagulate plan on retina”, Computer Optics, 43:2 (2019), 304–315 |
22. |
Kozak I, Luttrull J, “Modern retinal laser therapy”, Saudi J Ophthalmol, 29:2 (2014), 137–146 |
23. |
Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I, “Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy”, Investig Ophthalmol Vis Sci, 55:6 (2014), 3432–3438 |
24. |
Ilyasova N, Paringer R, Kupriyanov A, Kirsh D, “Intelligent feature selection technique for segmentation of fundus images”, 2017 Seventh Int Conf on Innovative Computing Technology (INTECH), 2017, 138–143 |
25. |
MaZda Web Site, 2023 http://www.eletel.p.lodz.pl/programy/mazda/index.php |
26. |
Wu J, Poehlman S, Noseworthy MD, Kamath MV, “Texture feature based automated seeded region growing in abdominal MRI segmentation”, J Biomed Sci Eng, 02:01 (2009), 263–267 |
27. |
Gabbasov R, Paringer R, “Influence of the receptive field size on accuracy and performance of a Convolutional Neural Network”, 2020 Int Conf on Information Technology and Nanotechnology (ITNT), 2020, 1–4 |
28. |
Arellano AM, Dai W, Wang S, Jiang X, Ohno-Machado L, “Privacy policy and technology in biomedical data science”, Annu Rev Biomed Data Sci, 1 (2018), 115–129 |
29. |
Shorten C, Khoshgoftaar TM, “A survey on image data augmentation for Deep Learning”, J Big Data, 6:1 (2019), 60 |
30. |
Castro E, Cardoso JS, Pereira JC, “Elastic deformations for data augmentation in breast cancer mass detection”, 2018 IEEE EMBS Int Conf on Biomedical and Health Informatics (BHI), 2018, 230–234 |
31. |
Ishwaran H, O'Brien R, “Commentary: The problem of class imbalance in biomedical data”, J Thorac Cardiovasc Surg, 161:6 (2021), 1940–1941 |
32. |
Charte F, Rivera AJ, del Jesus MJ, Herrera F, “MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation”, Knowl Based Syst, 89 (2015), 385–397 |
33. |
Pereira RM, Costa YMG, Silla CN Jr., “MLTL: A multi-label approach for the Tomek Link undersampling algorithm”, Neurocomputing, 383 (2020), 95–105 |
34. |
Mukhin A, Kilbas I, Paringer R, Ilyasova N, “Application of the gradient descent for data balancing in diagnostic image analysis problems”, 2020 Int Conf on Information Technology and Nanotechnology (ITNT), 2020, 1–4 |
35. |
Hao D, Zhang L, Sumkin J, Mohamed A, Wu S, “Inaccurate labels in weakly-supervised deep learning: Automatic identification and correction and their impact on classification performance”, IEEE J Biomed Health Inform, 24:9 (2020), 2701–2710 |
36. |
Paringer RA, Mukhin AV, Ilyasova NY, Demin NS, “Neural network application for semantic segmentation of fundus”, Computer Optics, 46:4 (2022), 596–602 |
37. |
Ronneberger O, Fischer P, Brox T, “U-Net: Convolutional networks for biomedical image segmentation”, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III), eds. Navab N, Hornegger J, Wells WM, Frangi AF, Springer International Publishing Switzerland, Cham, Heidelberg, 2015, 234–241 |
38. |
He K, Zhang X, Ren S, Sun J, “Deep residual learning for image recognition”, Proc IEEE Conf on Computer Vision and Pattern Recognition, 2016, 770–778 |
39. |
Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K, DenseNet: Implementing efficient convnet descriptor pyramids, 2014, arXiv: 1404.1869 |
40. |
Chollet F, “Xception: Deep learning with depthwise separable convolutions”, Proc IEEE Conf on Computer Vision and Pattern Recognition, 2017, 1251–1258 |
41. |
Krizhevsky A, Sutskever I, Hinton GE, “ImageNet classification with deep convolutional neural networks”, Adv Neural Inf Process Syst, 25 (2012), 1097–1105 |
42. |
Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J, “UNet++: A nested U-Net architecture for medical image segmentation”, Deep learning in medical image analysis and multimodal learning for clinical decision support, eds. Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, Springer Nature Switzerland AG, Cham, 2018, 3–11 |
43. |
Fan T, Wang G, Li Y, Wang H, “MA-Net: A multi-scale attention network for liver and tumor segmentation”, IEEE Access, 8 (2020), 179656–179665 |
44. |
Chaurasia A, Culurciello E, “LinkNet: Exploiting encoder representations for efficient semantic segmentation”, 2017 IEEE Visual Communications and Image Processing (VCIP), 2017, 1–4 |
45. |
Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S, “Feature pyramid networks for object detection”, 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2017, 936–944 |
46. |
Zhao H, Shi J, Qi X, Wang X, Jia J, “Pyramid scene parsing network”, 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2017, 6230–6239 |
47. |
Li H, Xiong P, An J, Wang L, Pyramid Attention Network for semantic segmentation, 2018, arXiv: 1805.10180 |
48. |
Chen L-C, Papandreou G, Schroff F, Adam H, Rethinking atrous convolution for Semantic Image segmentation, 2017, arXiv: 1706.05587 |
49. |
Ma Y-d, Liu Q, Quan Z-b, “Automated image segmentation using improved PCNN model based on cross-entropy”, Proc 2004 Int Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, 743–746 |
50. |
Kingma DP, Ba J, Adam: A method for stochastic optimization, 2014, arXiv: 1412.6980 |