RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика

Компьютерная оптика, 2023, том 47, выпуск 5, страницы 824–831 (Mi co1184)

Применение искусственного интеллекта в офтальмологии на примере решения задачи семантической сегментации изображения глазного дна
Н. С. Демин, Н. Ю. Ильясова, Р. А. Парингер, Д. В. Кирш

Список литературы

1. Rottier JB, “Artificial intelligence: reinforcing the place of humans in our healthcare system”, La Revue du Praticien, 68:10 (2018), 1150–1151
2. Fourcade A, Khonsari RH, “Deep learning in medical image analysis: A third eye for doctors”, J Stomatol Oral Maxillofac Surg, 120:4 (2019), 279–288  crossref
3. Gao A, et al., “Progress in robotics for combating infectious diseases”, Sci Robot, 6:52 (2021), eabf1462  crossref
4. Forecast of scientific and technological development of the Russian Federation until 2030, 2022 http://static.government.ru/media/files/41d4b737638b91da2184.pdf
5. Trinh M, Ghassibi M, Lieberman R, “Artificial intelligence in retina”, Adv Ophthalmol Optom, 6:1 (2021), 175–185  crossref
6. Vorobieva IV, Merkushenkova DA, “Diabetic retinopathy in patients with type 2 Diabetes Mellitus. Epidemiology, a modern view of pathogenesis”, Ophthalmology, 9:4 (2012), 18–21
7. Dedov II, Shestakova MV, Galstyan GR, “Prevalence of type 2 Diabetes Mellitus in the adult population of Russia (NATION study)”, Diabetes Mellit, 19:2 (2016), 104–112  crossref
8. Tan GS, Cheung N, Simo R, “Diabetic macular edema”, Lancet Diab Endocrinol, 5:2 (2017), 143–155  crossref
9. Amirov AN, Abdulaeva EA, Minkhuzina EL, “Diabetic macular edema: Epidemiology, pathogenesis, diagnosis, clinical presentation, and treatment”, Kazan Medical Journal, 96:1 (2015), 70–74  crossref
10. Doga AV, Kachalina GF, Pedanova EK, Buryakov DA, “Modern diagnostic and treatment aspects of diabetic macular edema”, Ophthalmology Diabetes, 17:4 (2014), 51–59 (in Russian)  crossref
11. Bratko GV, Chernykh VV, Sazonova OV, “On early diagnostics and the occurence rate of diabetic macular edema and identification of diabetes risk groups”, Siberian Scientific Medical Journal, 35:1 (2015), 33–36
12. Wong TY, Liew G, Tapp RJ, “Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies”, Lancet, 371:9614 (2008), 736–743  crossref
13. Acharya UR, Ng EY, Tan JH, Sree SV, Ng KH, “An integrated index for the identification of diabetic retinopathy stages using texture parameters”, J Med Syst, 36:3 (2012), 2011–2020  crossref
14. Astakhov YuS, Shadrichev FE, Krasavina MI, Grigorieva NN, “Modern approaches to the treatment of diabetic macular edema”, Ophthalmological Statements, 4 (2009), 59–69
15. Zamytsky EA, Zolotarev AV, Karlova EV, Zamytsky PA, “Analysis of the coagulates intensity in laser treatment of diabetic macular edema in a Navilas robotic laser system”, Saratov Journal of Medical Scientific Research, 13:2 (2017), 375–378
16. Zamytskiy EA, Zolotarev AV, Karlova EV, “Comparative quantitative assessment of the placement and intensity of laser spots for treating diabetic macular edema”, Russian Journal of Clinical Ophthalmology, 21:2 (2021), 58–62  crossref
17. Kotsur TV, Izmailov AS, “The effectiveness of laser coagulation in the macula and high-density microphotocoagulation in the treatment of diabetic maculopathy”, Ophthalmological Statements, 9:4 (2016), 43–45  crossref
18. Whiting DR, Guariguata L, Weil C, Shaw J, “IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030”, Diabetes Res Clin Pract, 94:3 (2011), 311–321  crossref
19. Shirokanev AS, Kirsh DV, Ilyasova NYu, Kupriyanov AV, “Investigation of algorithms for coagulate arrangement in fundus images”, Computer Optics, 42:4 (2018), 712–721  crossref
20. Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA, “Method for selection macular edema region using optical coherence tomography data”, Computer Optics, 44:2 (2020), 250–258  crossref
21. Ilyasova NYu, Shirokanev AS, Kupriyanov AV, Paringer RA, “Technology of intellectual feature selection for a system of automatic formation of a coagulate plan on retina”, Computer Optics, 43:2 (2019), 304–315  crossref  mathscinet
22. Kozak I, Luttrull J, “Modern retinal laser therapy”, Saudi J Ophthalmol, 29:2 (2014), 137–146  crossref
23. Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I, “Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy”, Investig Ophthalmol Vis Sci, 55:6 (2014), 3432–3438  crossref
24. Ilyasova N, Paringer R, Kupriyanov A, Kirsh D, “Intelligent feature selection technique for segmentation of fundus images”, 2017 Seventh Int Conf on Innovative Computing Technology (INTECH), 2017, 138–143  crossref
25. MaZda Web Site, 2023 http://www.eletel.p.lodz.pl/programy/mazda/index.php
26. Wu J, Poehlman S, Noseworthy MD, Kamath MV, “Texture feature based automated seeded region growing in abdominal MRI segmentation”, J Biomed Sci Eng, 02:01 (2009), 263–267  crossref
27. Gabbasov R, Paringer R, “Influence of the receptive field size on accuracy and performance of a Convolutional Neural Network”, 2020 Int Conf on Information Technology and Nanotechnology (ITNT), 2020, 1–4  crossref
28. Arellano AM, Dai W, Wang S, Jiang X, Ohno-Machado L, “Privacy policy and technology in biomedical data science”, Annu Rev Biomed Data Sci, 1 (2018), 115–129  crossref
29. Shorten C, Khoshgoftaar TM, “A survey on image data augmentation for Deep Learning”, J Big Data, 6:1 (2019), 60  crossref
30. Castro E, Cardoso JS, Pereira JC, “Elastic deformations for data augmentation in breast cancer mass detection”, 2018 IEEE EMBS Int Conf on Biomedical and Health Informatics (BHI), 2018, 230–234  crossref
31. Ishwaran H, O'Brien R, “Commentary: The problem of class imbalance in biomedical data”, J Thorac Cardiovasc Surg, 161:6 (2021), 1940–1941  crossref
32. Charte F, Rivera AJ, del Jesus MJ, Herrera F, “MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation”, Knowl Based Syst, 89 (2015), 385–397  crossref
33. Pereira RM, Costa YMG, Silla CN Jr., “MLTL: A multi-label approach for the Tomek Link undersampling algorithm”, Neurocomputing, 383 (2020), 95–105  crossref
34. Mukhin A, Kilbas I, Paringer R, Ilyasova N, “Application of the gradient descent for data balancing in diagnostic image analysis problems”, 2020 Int Conf on Information Technology and Nanotechnology (ITNT), 2020, 1–4  crossref
35. Hao D, Zhang L, Sumkin J, Mohamed A, Wu S, “Inaccurate labels in weakly-supervised deep learning: Automatic identification and correction and their impact on classification performance”, IEEE J Biomed Health Inform, 24:9 (2020), 2701–2710  crossref
36. Paringer RA, Mukhin AV, Ilyasova NY, Demin NS, “Neural network application for semantic segmentation of fundus”, Computer Optics, 46:4 (2022), 596–602  crossref
37. Ronneberger O, Fischer P, Brox T, “U-Net: Convolutional networks for biomedical image segmentation”, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III), eds. Navab N, Hornegger J, Wells WM, Frangi AF, Springer International Publishing Switzerland, Cham, Heidelberg, 2015, 234–241  crossref
38. He K, Zhang X, Ren S, Sun J, “Deep residual learning for image recognition”, Proc IEEE Conf on Computer Vision and Pattern Recognition, 2016, 770–778  crossref
39. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K, DenseNet: Implementing efficient convnet descriptor pyramids, 2014, arXiv: 1404.1869  crossref
40. Chollet F, “Xception: Deep learning with depthwise separable convolutions”, Proc IEEE Conf on Computer Vision and Pattern Recognition, 2017, 1251–1258  crossref
41. Krizhevsky A, Sutskever I, Hinton GE, “ImageNet classification with deep convolutional neural networks”, Adv Neural Inf Process Syst, 25 (2012), 1097–1105
42. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J, “UNet++: A nested U-Net architecture for medical image segmentation”, Deep learning in medical image analysis and multimodal learning for clinical decision support, eds. Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, Springer Nature Switzerland AG, Cham, 2018, 3–11  crossref  mathscinet
43. Fan T, Wang G, Li Y, Wang H, “MA-Net: A multi-scale attention network for liver and tumor segmentation”, IEEE Access, 8 (2020), 179656–179665  crossref
44. Chaurasia A, Culurciello E, “LinkNet: Exploiting encoder representations for efficient semantic segmentation”, 2017 IEEE Visual Communications and Image Processing (VCIP), 2017, 1–4  crossref
45. Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S, “Feature pyramid networks for object detection”, 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2017, 936–944  crossref
46. Zhao H, Shi J, Qi X, Wang X, Jia J, “Pyramid scene parsing network”, 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2017, 6230–6239  crossref
47. Li H, Xiong P, An J, Wang L, Pyramid Attention Network for semantic segmentation, 2018, arXiv: 1805.10180  crossref
48. Chen L-C, Papandreou G, Schroff F, Adam H, Rethinking atrous convolution for Semantic Image segmentation, 2017, arXiv: 1706.05587  crossref
49. Ma Y-d, Liu Q, Quan Z-b, “Automated image segmentation using improved PCNN model based on cross-entropy”, Proc 2004 Int Symposium on Intelligent Multimedia, Video and Speech Processing, 2004, 743–746  crossref  mathscinet
50. Kingma DP, Ba J, Adam: A method for stochastic optimization, 2014, arXiv: 1412.6980  crossref  zmath


© МИАН, 2025