RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика

Компьютерная оптика, 2023, том 47, выпуск 5, страницы 832–840 (Mi co1185)

Recognition of biosignals with nonlinear properties by approximate entropy parameters
L. A. Manilo, A. P. Nemirko

Список литературы

1. Pincus SM, “Approximate entropy as a measure of system complexity”, Proc Natl Acad Sci USA, 88:6 (1991), 2297–2301  crossref  mathscinet  zmath
2. Pincus S, “Approximate entropy (ApEn) as a complexity measure”, Chaos, 5:1 (1995), 110–117  crossref  mathscinet
3. Nonlinear biomedical signal processing, v. 2, Dynamic analysis and modelling, ed. Metin A, Wiley-IEEE Press, New York, 2001  crossref
4. Richman JS, Moorman JR, “Physiological time-series analysis using approximate entropy and sample entropy”, Am J Physiol Heart Circ Physiol, 278:6 (2000), H2039–H2049  crossref
5. Costa MD, Goldberger AL, “Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series”, J Entropy, 17:3 (2015), 1197–1203  crossref
6. Costa M, Goldberger AL, Peng C-K, “Multiscale entropy analysis of biological signals”, Phys Rev E, 71:2 (2005), 021906  crossref  mathscinet
7. Bolea J, Bailon R, Pueyo E, “On the standardization of approximate entropy: multidimensional approximate entropy index evaluated on short-term HRV time series”, Complexity, 2018 (2018), 4953273  crossref
8. Deka B, Deka D, “Nonlinear analysis of heart rate variability signals in meditative state: a review and perspective”, Biomed Eng Online, 22:1 (2023), 35  crossref
9. Lake DE, Richman JS, Griffin MP, Moorman JR, “Sample entropy analysis of neonatal heart rate variability”, J Physiol Regul Integr Comp Physiol, 283:3 (2002), R789–R797  crossref
10. Chen Y, Yang H, “A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system”, 2013 35th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, 2599–2602  crossref
11. Singh M, Singh B, Singh G, “Optimal RR-interval data length for entropy based heart rate variability analysis”, Int J Comput Appl, 123:14 (2015), 39–42  crossref
12. Benzy VK, Jasmin EA, Koshy RC, “Approximate entropy and wavelet entropy based depth of anesthesia monitoring”, 2015 Int Conf on Control Communication & Computing India (ICCC), 2015, 371–374  crossref
13. Fan S-Z, Yeh J-R, Chen B-C, “Comparison of EEG approximate entropy and complexity measures of depth of anaesthesia during inhalational general anaesthesia”, J Med Biol Eng, 31:5 (2011), 359–366  crossref
14. Li P, Karmakar C, Yearwood J, Venkatesh S, Palaniswami M, Liu C, “Detection of epileptic seizure based on entropy analysis of short-term EEG”, PLOS ONE, 13:3 (2018), e0193691  crossref  mathscinet
15. Kaur A, Verma K, Bhondekar AP, Shashvat K, “Comparison of classification models using entropy based features from sub-bands of EEG”, Traitement du Signal, 37:2 (2020), 279–289  crossref
16. Gao X, Yan X, Gao P, Gao X, Zhang S, “Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks”, Artif Intell Med, 102 (2020), 101711  crossref
17. Natarajan K, Acharya UR, Alias F, et al., “Nonlinear analysis of EEG signals at different mental states”, BioMed Eng OnLine, 3:1 (2004), 7  crossref  mathscinet
18. Burioka N, Miyata M, Cornélissen G, et al., “Approximate entropy in the electroencephalogram during wake and sleep”, Clin EEG Neurosci, 36:1 (2005), 21–24  crossref
19. Chuckravanen D, “Approximate entropy as a measure of cognitive fatigue: An EEG pilot study”, Int J Emerging Trends Sci Technol, 1:7 (2014), 1036–1042
20. Ji N, Ma L, Dong H, Zhang X, “EEG signals feature extraction based on DWT and EMD combined with approximate entropy”, Brain Sci, 9:8 (2019), 201  crossref
21. Schuster HG, Deterministic chaos. An introduction, 2nd, VCH Publishers, Weinheim, Germany, 1988  mathscinet  zmath
22. Moon FC, Chaotic Vibrations: an introduction for applied scientists and engineers, John Wiley & Sons, Hoboken, New Jersey, 2004  mathscinet
23. Manilo LA, Nemirko AP, “Approximation of the Kolmogorov entropy in the analysis of chaotic processes on finite samples”, Proc 14th Russian Conf on Mathematical Methods for Pattern Recognition (MMPR-14), 2009, 405–407 (in Russian)
24. Porta A, Baselli G, Liberati D, et al., “Measuring regularity by means of a corrected conditional entropy in sympathetic outflow”, Biol Cybern, 78:1 (1998), 71–78  crossref  zmath
25. Nemirko AP, Manilo LA, Kalinichenko AN, Mathematical analysis of biomedical signals and data, “Fizmatlit” Publisher, Moscow, 2017 (in Russian)  zmath
26. Pincus SM, Goldberger AL, “Physiological time-series analysis: What does regularity quantify?”, Am J Physiol, 266:4 Pt 2 (1994), H1643–H1656  crossref
27. Manilo LA, Zozulya EP, “Estimation of time series correlation dimension for the task of cardiac rhythm disturbances analysis”, Biomedical Radioelectronics, 11 (2009), 32–39 (in Russian)
28. Duda RO, Hart PE, Stork DG, Pattern classification, v. Part 1, Wiley, New York, 2001  mathscinet  zmath
29. Manilo LA, Volkova SS, “Recognition of the deep anesthesia stage from parameters of the approximate entropy of EEG signal”, Pattern Recogn Image Anal, 23:1 (2013), 92–97  crossref
30. Tong S, Thakor NV, Quantitative EEG analysis methods and clinical applications, Artech House, Norwood, 2009


© МИАН, 2025