|
|
|
Список литературы
|
|
|
1. |
Deerinck T, Bushong E, Lev-Ram V, Shu X, Tsien R, Ellisman M, “Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues”, Microsc Microanal, 16:S2 (2010), 1138–1139 |
2. |
Ciresan D, Gambardella L, Giusti A, Schmidhuber J, “Deep neural networks segment neuronal membranes in electron microscopy images”, NIPS'12: Proc 25th Int Conf on Neural Information Processing Systems, 2 (2012), 2852–2860 |
3. |
Lucchi A, Smith K, Achanta R, Knott G, Fua P, “Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features”, IEEE Trans Med Imaging, 31:2 (2012), 474–486 |
4. |
Helmstaedter M, Mitra P, “Computational methods and challenges for large-scale circuit mapping”, Curr Opin Neurobiol, 22:1 (2012), 162–169 |
5. |
Ronneberger O, Fischer P, Brox T, “U-Net: Convolutional networks for biomedical image segmentation”, Medical image computing and computer-assisted intervention – MICCAI 2015 (18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III), eds. Navab N, Hornegger J, Wells WM, Frangi AF, Springer International Publishing Switzerland, Cham, 2015, 234–241 |
6. |
Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C, “The importance of skip connections in biomedical image segmentation”, Deep learning and data labeling for medical applications, eds. Carneiro G, Mateus D, Peter L, Bradley A, Tavares JMRS, Belagiannis V, Papa JP, Nascimento JC, Loog M, Lu Z, Cardoso JS, Cornebise J, Springer International Publishing AG, Cham, 2016, 179–187 |
7. |
Fakhry A, Zeng T, Ji S, “Residual deconvolutional networks for brain electron microscopy image segmentation”, IEEE Trans Med Imaging, 36:2 (2017), 447–456 |
8. |
Xiao C, Liu J, Chen X, Han H, Shu C, Xie Q, “Deep contextual residual network for electron microscopy image segmentation in connectomics”, 2018 IEEE 15th Int Symp on Biomedical Imaging (ISBI), 2018, 378–381 |
9. |
Çiçek Ö, Abdulkadir A, Lienkamp S, Brox T, Ronneberger O, “3D U-Net: Learning dense volumetric segmentation from sparse annotation”, Medical image computing and computer-assisted intervention – MICCAI 2016, v. Pt II, eds. Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, Springer International Publishing AG, Cham, 2016, 424–432 |
10. |
Milletari F, Navab N, Ahmadi S, “V-Net: Fully convolutional neural networks for volumetric medical image segmentation”, 2016 Fourth Int Conf on 3D Vision (3DV), 2016, 565–571 |
11. |
Kamnitsas K, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Rueckert D, Glocker B, “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation”, Med Image Anal, 36 (2017), 61–78 |
12. |
Li W, Wang G, Fidon L, Ourselin S, Cardoso M, Vercauteren T, “On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task”, Information processing in medical imaging, eds. Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P-T, Shen D, Springer International Publishing AG, Cham, 2017, 348–360 |
13. |
Zhang Z, Wu C, Coleman S, Kerr D, “DENSE-INception U-net for medical image segmentation”, Comput Methods Programs Biomed, 192 (2020), 105395 |
14. |
Mubashar M, Ali H, Grönlund C, Azmat S, “R2U++: A multiscale recurrent residual U-Net with dense skip connections for medical image segmentation”, Neural Comput Appl, 34 (2022), 17723–17739 |
15. |
Getmanskaya AA, Sokolov NA, Turlapov VE, “Multiclass U-Net segmentation of brain electron microscopy data using original and semi-synthetic training datasets”, Program Comput Softw, 48 (2022), 164–171 |
16. |
Fend C, Moghiseh A, Redenbach C, Schladitz K, “Reconstruction of highly porous structures from FIB-SEM using a deep neural network trained on synthetic images”, J Microsc, 281:1 (2021), 16–27 |
17. |
Arganda-Carreras I, Turaga SC, Berger DR, Cireşan D, Giusti A, Gambardella LM, Schmidhuber J, Laptev D, Dwivedi S, Buhmann JM, Liu T, Seyedhosseini M, Tasdizen T, Kamentsky L, Burget R, Uher V, Tan X, Sun C, Pham TD, Bas E, Uzunbas MG, Cardona A, Schindelin J, Seung HS, “Crowdsourcing the creation of image segmentation algorithms for connectomics”, Front Neuroanat, 9 (2015), 142 |
18. |
Lucchi A, Smith K, Achanta R, Knott G, Fua P, Electron microscopy dataset, 2023 https://www.epfl.ch/labs/cvlab/data/data-em |
19. |
Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M, Morgan JL, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW, “Saturated reconstruction of a volume of neocortex”, Cell, 162:3 (2015), 648–661 |
20. |
Mekuč MŽ, Bohak C, Hudoklin S, Kim B, Romih R, Kim M, Marolt M, “Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data”, Comput Biol Med, 119 (2020), 103693 |
21. |
MancaZerovnikMekuc / UroCell. The UroCell dataset, 2023 https://github.com/MancaZerovnikMekuc/UroCell |
22. |
Vulović M, Ravelli R, Van Vliet L, Koster A, Lazić I, Lücken U, Rullgård H, Öktem O, Rieger B, “Image formation modeling in cryo-electron microscopy”, J Struct Biol, 183:1 (2013), 19–32 |
23. |
Yuan Z, Ma X, Yi J, Luo Z, Peng J, “HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images”, Comput Methods Programs Biomed, 200 (2021), 105925 |
24. |
Casser V, Kang K, Pfister H, Haehn D, “Fast mitochondria detection for connectomics”, Proc Mach Learn Res, 121 (2020), 111–120 |
25. |
Cheng H, Varshney A, “Volume segmentation using convolutional neural networks with limited training data”, 2017 IEEE Int Conf on Image Processing (ICIP), 2017, 590–594 |
26. |
Peng J, Yuan Z, “Mitochondria segmentation from EM images via hierarchical structured contextual forest”, IEEE J Biomed Health Inform, 24:8 (2020), 2251–2259 |
27. |
Cetina K, Buenaposada J, Baumela L, “Multi-class segmentation of neuronal structures in electron microscopy images”, BMC Bioinformatics, 19 (2018), 298 |