RUS  ENG
Full version
JOURNALS // Computer Optics

Computer Optics, 2017, Volume 41, Issue 5, Pages 765–774 (Mi co447)

Evaluation of signature verification reliability based on artificial neural networks, Bayesian multivariate functional and quadratic forms
A. I. Ivanov, P. S. Lozhnikov, A. E. Sulavko

References

1. The Global State of Information Security Survey 2016., http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey/download.html, PricewaterhouseCoopers, 2016 (request date 27.06.2016)
2. A.I. Ivanov, P.S. Lozhnikov, A.E. Samotuga, “A technology to form hybrid documents”, Cybernetics and Systems Analysis, 50:6 (2014), 152–156 (in Russian)
3. GOST R 52633.0-2006. Information protection. Information protection technology. Requirements to the means of high-reliability biometric authentication, “Standartinform” Publisher, M., 2006 (in Russian)
4. P.S. Lozhnikov, A.E. Sulavko, A.V. Eremenko, D.A. Volkov, “Experimental evaluation of reliability of signature verification by quadratic form networks, fuzzy extractors and perceptrons”, Information and Control Systems, 5:84 (2016), 73–85 (in Russian)  elib
5. Y. Dodis, L. Reyzin, A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy”, EUROCRYPT 2004 (International Conference on the Theory and Applications of Cryptographic Techniques), 2004, 523–540  mathscinet  zmath
6. B.S. Ahmetov, A.I. Ivanov, V.A. Funtikov, A.V. Bezjaev, E.A. Malygina, Technology of large neural networks usage for fuzzy biometric data conversion to access key codes: monograph, “LEM” Publisher, Almaty, Kazakhstan, 2014 (in Russian)
7. A.I. Ivanov, Neural network protection of confidential biometric data and private cryptographic keys: A monograph, “PNIEI” Publisher, Penza, 2014 (in Russian)
8. A.I. Galushkin, Synthesis of multi-level systems for pattern recognition, “Energija” Publisher, M., 1974 (in Russian)  mathscinet
9. G.E. Hinton, “Training products of experts by minimizing contrastive divergence”, Neural Computation, 14:8 (2002), 1771–1800  crossref  zmath
10. L.G. Hafemann, R. Sabourin, L.S. Oliveira, “Writer-independent feature learning for offline signature verification using deep convolutional neural networks”, International Joint Conference on Neural Networks (IJCNN), 2016, 2576–2583
11. A.N. Kolmogorov, “On the representation of a multivariate continuous function as a superposition of monovariate continuous functions”, Doklady Akademii Nauk SSSR, 114:5 (1957), 953–956 (in Russian)  mathnet  zmath
12. GOST R 52633.5-2011. Information protection. Information protection technology. The neural net biometry-code converter automatic training, “Standartinform” Publisher, M., 2011 (in Russian)
13. A.I. Ivanov, Neural network algorithms for biometric personal identification, “Radiotehnika” Publisher, M., 2004 (in Russian)
14. A.I. Ivanov, P.S. Lozhnikov, E.I. Kachajkin, “Verification of authenticity for handwritten signatures using Bayesian-Hamming networks and quadric form networks”, Information Security Questions, 2 (2015), 28–34 (in Russian)  elib
15. P.S. Lozhnikov, A.I. Ivanov, E.I. Kachajkin, A.E. Sulavko, “Biometric identification of handwritten images via correlation analog of Bayes' rule”, Information Security Questions, 3 (2015), 48–54 (in Russian)  elib
16. A.I. Ivanov, P.S. Lozhnikov, Ju.I. Serikova, “Reducing the size of training-sufficient sampling due to symmetrization of correlation relationships of biometric data”, Cybernetics and Systems Analysis, 52:3 (2016), 49–56 (in Russian)  mathscinet  zmath
17. A.V. Bezev, A.I. Ivanov, Ju.V. Funtikova, “Optimization of the structure self-correcting bio-code, storing syndromes error as fragments hash-functions”, UrFR Newsletter. Information Security, 3:13 (2014), 4–13 (in Russian)  elib


© Steklov Math. Inst. of RAS, 2025