Е. В. Васильев, А. В. Пержу, А. О. Король, Д. Ю. Капитан, А. Е. Рыбин, К. С. Солдатов, В. Ю. Капитан
|
|
|
Список литературы (References)
|
|
|
1. |
Д. А. Зинченко, Э. Г. Никонов, А. И. Зинченко, “Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло”, Компьютерные исследования и моделирование, 11:1 (2019), 87–94 [D. A. Zinchenko, E. G. Nikonov, A. I. Zinchenko, “Monte Carlo simulation and analysis of the main characteristics of the internal track system of a multifunctional MPD particle detector”, Computer Research and Modeling, 11:1 (2019), 87–94 (in Russian) ] |
2. |
В. Ю. Капитан, Е. В. Васильев, Ю. А. Шевченко, А. В. Пержу, Д. Ю. Капитан, и др., “Термодинамические свойства систем спинов Гейзенберга на квадратной решетке с взаимодействием Дзялошинского – Мория”, Дальневосточный математический журнал, 20:1 (2020), 63–73 [V. Yu. Kapitan, Vasil’ev, E. V. , Yu. A. Shevchenko, A. V. Perzhu, D. Yu. Kapitan, et al., “Thermodynamic properties of Heisenberg spin systems on a square lattice with the Dzyaloshinskii – Moriya interaction”, Far Eastern Mathematical Journal, 20:1 (2020), 63–73 (in Russian) ] |
3. |
В. В. Прудников, П. В. Прудников, Е. А. Поспелов, “Компьютерное моделирование неравновесного критического поведения трехмерной модели Изинга”, Компьютерные исследования и моделирование, 6:1 (2014), 119–129 [V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, “Computer simulation of the nonequilibrium critical behavior of the threedimensional Ising model”, Computer Research and Modeling, 6:1 (2014), 119–129 (in Russian) ] |
4. |
К. В. Шаповалова, В. Ю. Капитан, А. Г. Макаров, и др., “Методы канонического и мультиканонического семплирования пространства состояний векторных моделей”, Дальневосточный математический журнал, 17:1 (2017), 124–130 [K. V. Shapovalova, V. Yu. Kapitan, A. G. Makarov, et al., “Methods of canonical and multicanonical sampling of the space of vector models”, Far Eastern Mathematical Journal, 17:1 (2017), 124–130 (in Russian) ] |
5. |
К. В. Шаповалова, П. Д. Андрющенко, К. В. Нефедев, и др., “Зачем суперкомпьютер Дальневосточному федеральному университету?”, Современные наукоемкие технологии, 2017, № 1, 81–87 [K. V. Shapovalova, P. D. Andryushchenko, K. V. Nefedev, et al., “Why does Far East Federal University need supercomputer?”, Modern high technologies, 2017, no. 1, 81–87 (in Russian)] |
6. |
U. Ayachit, The paraview guide: a parallel visualization application, Kitware, Inc, 2015 |
7. |
A. M. Belemuk, S. M. Stishov, “Phase transitions in chiral magnets from Monte Carlo simulations”, Physical Review B, 95:22 (2017), 224433 |
8. |
V. I. Belokon, V. Yu. Kapitan, O. I. Dyachenko, “Concentration of magnetic transitions in dilute magnetic materials”, Journal of Physics: Conference Series, 490:1 (2014), 012165 |
9. |
F. Bloch, “Nuclear induction”, Physical review, 70:7–8 (1946), 440 |
10. |
A. Bogdanov, A. Hubert, “The properties of isolated magnetic vortices”, Physica status solidi (b), 186:2 (1994), 527–543 |
11. |
A. Bogdanov, A. Hubert, “Thermodynamically stable magnetic vortex states in magnetic crystals”, Journal of magnetism and magnetic materials, 138:3 (1994), 255–269 |
12. |
S. Do Yi, S. Onoda, N. Nagaosa, J. H. Han, “Skyrmions and anomalous Hall effect in a Dzyaloshinskii – Moriya spiral magnet”, Physical Review B, 80:5 (2009), 054416 |
13. |
I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics”, Journal of Physics and Chemistry of Solids, 4:4 (1958), 241–255 |
14. |
M. Ezawa, “Compact merons and skyrmions in thin chiral magnetic films”, Physical Review B, 83:10 (2011), 100–408 |
15. |
A. Fert, V. Cros, J. Sampaio, “Skyrmions on the track”, Nature Nanotech, 8 (2013), 152–156 |
16. |
S. El. Hog, A. Bailly-Reyre, H. T. Diep, “Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii – Moriya interaction”, Journal of Magnetism and Magnetic Materials, 455 (2018), 32–38 |
17. |
W. Kang, Y. Huang, C. Zheng, et al., “Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory”, Sci. Rep, 6 (2016), 23164 |
18. |
V. Yu. Kapitan, K. V. Nefedev, “Labyrinth domain structure in the models with long-range interaction”, Journal of Nano- and Electronic Physics, 6:3 (2014), 03005–1 |
19. |
V. Yu. Kapitan, Yu. A. Shevchenko, A. V. Perzhu, E. V. Vasiliev, “Thermodynamic Properties of Heisenberg Spin Systems”, Key Engineering Materials, 806:4 (2019), 142–154 |
20. |
A. G. Makarov, K. V. Makarova, Yu. A. Shevchenko, P. D. Andriushchenko, V. Yu. Kapitan, K. S. Soldatov, A. V. Perzhu, A. E. Rybin, D. Yu. Kapitan, E. V. Vasiliev, et al., “On the Numerical Calculation of Frustrations in the Ising Model”, JETP Letters, 110:10 (2019), 702–706 |
21. |
C. H. Marrows, “An inside view of magnetic skyrmions”, Physics, 8 (2015), 40 |
22. |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 |
23. |
T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism”, Physical Review, 120:1 (1960), 91 |
24. |
L. Neel, “Anisotropie magnetique superficielle et surstructures d’orientation”, Journal de Physique et le Radium, 15:4 (1954), 225–239 |
25. |
S. Parkin, M. Hayashi, L. Thomas, “Magnetic domain-wall racetrack memory”, Science, 320:5873 (2008), 190–194 |
26. |
S. Parkin, S.-H. Yang, “Memory on the racetrack”, Nature nanotechnology, 10:3 (2015), 195–198 |
27. |
P. V. Prudnikov, V. V. Prudnikov, M. V. Mamonova, N. I. Piskunova, “Influence of anisotropy on magnetoresistance in magnetic multilayer structures”, Journal of Magnetism and Magnetic Materials, 482:10 (2019), 201–205 |
28. |
Yu. A. Shevchenko, A. G. Makarov, P. D. Andriushchenko, K. V. Nefedev, “Multicanonical sampling of the space of states of ? (2, n)-vector models”, Journal of Experimental and Theoretical Physics, 124:6 (2017), 982–993 |
29. |
K. S. Soldatov, K. V. Nefedev, V. Yu. Kapitan, P. D. Andriushchenko, “Approaches to numerical solution of 2D Ising model”, Journal of Physics: Conference Series, 741:1 (2016), 012199 |
30. |
K. S. Soldatov, A. A. Peretyatko, P. D. Andriushchenko, K. V. Nefedev, Yu. Okabe, “Comparison of diluted antiferromagnetic Ising models on frustrated lattices in a magnetic field”, Physics Letters A, 383:12 (2019), 1229–1234 |
31. |
D. Suess, C. Vogler, F. Bruckner, et al., “Spin Torque Efficiency and Analytic Error Rate Estimates of Skyrmion Racetrack Memory”, Sci Rep, 9 (2019), 4827 |
32. |
K. Szulc, F. Lisiecki, A. Makarov, et al., “Remagnetization in arrays of ferromagnetic nanostripes with periodic and quasiperiodic order”, Physical Review B, 99:6 (2019), 064412 |
33. |
F. Wang, D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Physical review letters, 86:10 (2001), 2050 |
34. |
R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics”, Nature Reviews Materials, 1:7 (2016), 16044 |