D. V. Ilyasov, A. G. Molchanov, M. V. Glagolev, G. G. Suvorov, A. A. Sirin
|
|
|
References
|
|
|
1. |
V. V. Averkin, et al., Information issue “On the State of Natural Resources and the Environment of the Moscow Region in 2015”, Aleksashin A. A, Moscow, 2016, 206 pp. (in Russian) |
2. |
S. V. Aladko, V. P. Tribis, E. N. Shkutov, “Organic matter mineralization of drained peat bogs at a long-term agricultural use”, Melioration, 54:7 (2005), 94–99 (in Russian) |
3. |
S. E. Vomperskiy, A. A. Sirin, A. I. Glukhov, Formation and regime of runoff during forest hydromelioration, Nauka, Moscow, 1988, 168 pp. (in Russian) |
4. |
S. E. Vompersky, A. A. Sirin, O. P. Tsyganova, N. A. Valyaeva, D. A. Maykov, “Peatlands and paludified lands of Russia: attempt of analyses of spatial distribution and diversity”, Izvesfiya Rossiyskoj Akademii Nauk, Seriya geograficheskaya, 2005, no. 5, 21–33 (in Russian) |
5. |
M. V. Glagolev, M. V. Chistotin, N. A. Shnyrev, A. A. Sirin, “The Emission of Carbon Dioxide and Methane from Drained Peatlands Changed by Economic Use and from Natural Mires during the Summer-Fall Period (on Example of a Region of Tomsk Oblast)”, Agrochemistry, 2008, no. 5, 46–58 (in Russian) |
6. |
F. R. Zaydel'man, A. P. Shvarov, “Carbon dioxide fluxes in drained peat soils”, Vestnik Moskovskogo universiteta. Ser. 17. Pochvovedeniye, 2001, no. 3, 16–20 (in Russian) |
7. |
A. A. Zotov, V. M. Kosolapov, A. G. Kobzin, I. A. Trofimov, A. N. Ulanov, A. V. Shevtsov, Kh. Kh. Shel'menkina, N. N. Shchukin, Hayfields and pastures in the drained lands of the Non-Black Earth Region, Moscow, 2012, 1198 pp. (in Russian) |
8. |
D. V. Ilyasov, A. A. Sirin, G. G. Suvorov, V. B. Martynenko, “The Summer Carbon Dioxide and Methane Fluxes on Drained Peatland in Forest-Steppe of Bashkortostan”, Agrochemistry, 2017, no. 1, 50–62 (in Russian) |
9. |
Ecological Atlas of Russia, eds. Kasimov N. S., Tikunov V. S., Feoriya, Moscow, 2017, 118–121 (in Russian) |
10. |
I. V. Larin, Meadow farming and pasture farming, Kolos, Leningrad, 1969, 570 pp. (in Russian) |
11. |
T. Yu. Minayeva, A. A. Sirin, “Peat fires — causes and ways of prevention”, Nauka i promyshlennost' Rossii, 2002, no. 9, 3–8 (in Russian) |
12. |
A. G. Molchanov, A. V. Ol'chev, “Model of CO2 exchange in a sphagnum peat bog”, Computer research and modeling, 8:2 (2016), 369–377 (in Russian) |
13. |
A. G. Molchanov, “Gas exchange of carbon dioxide from the surface of sphagnum in boggy pine forests in southern taiga”, Dinamika okruzhayushchey sredy i global'nyye izmeneniya klimata, 8:1 (2017), 43–54 (in Russian) |
14. |
A. G. Molchanov, G. G. Suvorov, D. V. Il'yasov, A. A. Sirin, “Carbon dioxide fluxes under different haymaking regime on drained peat soil”, Agrochemistry, 2020, no. 9 (in Russian) |
15. |
T. A. Rabotnov, Meadow science, Izd-vo “MSU”, Moscow, 1984, 320 pp. (in Russian) |
16. |
A. A. Sirin, T. Yu. Minayeva, Peat bogs in Russia: the analysis of sectorial information, GEOS, Moscow, 2001 (in Russian) |
17. |
A. A. Sirin, T. Yu. Minayeva, A. E. Vozbrannaya, S. A. Bartalev, “How to avoid peat fires?”, Science in Russia, 2011, no. 2, 13–21 (in Russian) |
18. |
A. A. Sirin, G. G. Suvorov, M. V. Chistotin, M. V. Glagolev, “Values of methane emission from drainage ditches”, Environmental Dynamics and Global Climate Change, 3:2 (2012), 1–10 (in Russian) |
19. |
A. A. Sirin, D. A. Makarov, I. Gummert, A. A. Maslov, Ya. I. Gul'be, “Depth of Peat Burning and Carbon Losses from an Underground Forest Fire”, Contemporary Problems of Ecology, 2019, no. 5, 410–422 (in Russian) |
20. |
A. A. Sirin, M. A. Medvedeva, D. A. Makarov, A. A. Maslov, H. Joosten, “Monitoring of the vegetation cover of rewetted peatlands of the Moscow Region”, Bulletin of St. Petersburg University, Earth Sciences, 65:2 (2020), 1–31 (in Russian) |
21. |
G. S. Skoblin, Meadow and field feed production, Kolos, Moscow, 1977, 256 pp. (in Russian) |
22. |
A. V. Sokolov, V. V. Mamkin, V. K. Avilov, D. L. Tarasov, Yu. A. Kurbatova, A. V. Olchev, “Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog”, Computer Research and Modeling, 11:1 (2019), 153–171 (in Russian) |
23. |
G. G. Suvorov, M. V. Chistotin, A. A. Sirin, “Effect of Vegetation and Moisture Conditions on the Emission of Methane from Drained Peat Soil”, Agrochemistry, 2010, no. 12, 37–45 (in Russian) |
24. |
G. G. Suvorov, M. V. Chistotin, A. A. Sirin, “The Carbon losses from a drained peatland in Moscow Oblast used for peat extraction and agriculture”, Agrochemistry, 2015, no. 11, 51–62 (in Russian) |
25. |
Long-term cultural pasture on drained peat soil, ed. Ulanov A. N., OOO “Vesy ltd.”, Kirov, 2015, 124 pp. (in Russian) |
26. |
M. V. Chistotin, A. A. Sirin, L. Ye. Dulov, “Seasonal dynamics of carbon dioxide and methane emission from a peatland in Moscow region drained for peat extraction and agricultural use”, Agrochemistry, 2006, no. 6, 54–62 (in Russian) |
27. |
M. V. Chistotin, G. G. Suvorov, A. A. Sirin, “The Temporal pattern of methane emission from drained peat soil at pot experiment as depended on vegetation and soil moisture”, Agrochemistry, 2016, no. 12, 20–33 (in Russian) |
28. |
P. Alekseychik, I. Mammarella, D. Karpov, S. Dengel, I. Terentieva, A. Sabrekov, M. Glagolev, E. Lapshina, “Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog”, Atmospheric Chemistry and Physics, 17:15 (2017), 9333–9345 |
29. |
Eddy covariance: a practical guide to measurement and data analysis, eds. Aubinet M., Vesala T., Papale D., Springer Science & Business Media, 2012 |
30. |
M. Aurela, T. Riutta, T. Laurila, J.-P. Tuovinen, T. Vesala, E.-S. Tuittila, J. Rinne, S. Haapanala, J. Laine, “CO2 exchange of a sedge fen in southern Finland-The impact of a drought period”, Tellus B: Chemical and Physical Meteorology, 59:5 (2007), 826–837 |
31. |
K. A. Byrne, G. Kiely, P. Leahy, “CO2 fluxes in adjacent new and permanent temperate grasslands”, Agricultural and Forest Meteorology, 135:1–4 (2005), 82–92 |
32. |
N. N. Edwards, P. Sollins, “Continuous measurement of carbon dioxide evolution from partitioned forest floor components”, Ecology, 54:3 (1973), 406–412 |
33. |
L. Elsgaard, C.-M. Görres, C. C. Hoffmann, G. Blicher-Mathiesen, K. Schelde, S. O. Petersen, “Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management”, Agriculture, Ecosystems & Environment, 162 (2012), 52–67 |
34. |
E. Falge, D. D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, H. Dolman, A. Grainer, T. Grunwald, D. Hollinger, N.-O. Jensen, G. Katul, P. Keronen, A. Kowalski, C. Ta Lai, B. E. Law, T. Meyers, J. Moncrieff, E. Moors, J. W. Munger, K. Pilegaard, U. Rannik, C. Rebmann, A. E. Suyker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K. Wilson, S. Wofsy, “Gap filling strategies for defensible annual sums of net ecosystem exchange”, Agricultural and forest meteorology, 107:1 (2001), 43–69 |
35. |
M. V. Glagolev, A. F. Sabrekov, “On a problems related to a concept of soil thermal diffusivity and estimation of its dependence on soil moisture”, Environmental Dynamics and Global Climate Change, 10:2 (2019), 68–85 |
36. |
M. V. Glagolev, A. F. Sabrekov, “On several ill-posed and ill-conditioned mathematical problems of soil physics”, IOP Conference Series: Earth and Environmental Science, 368:1 (2019), 012011 |
37. |
T. V. Glukhova, A. A. Sirin, “Losses of Soil Carbon upon a Fire on a Drained Forested Raised Bog”, Eurasian Soil Science, 51:5 (2018), 542–549 |
38. |
R. A. Chimner, D. J. Cooper, “Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study”, Soil Biology and Biochemistry, 35:3 (2003), 345–351 |
39. |
M. Drösler, L. Verchot, A. Freibauer, G. Pan, C. D. Evans, R. A. Bourbonniere, J. P. Alm, S. Page, F. Agus, K. Hergoualc'h, J. Couwenberg, J. Jauhiainen, S. Sabiham, C. Wang, N. Srivastava, L. L. Bourgeau-Chavez, A. Hooijer, K. Minkkinen, N. French, T. Strand, A. Sirin, R. Mickler, K. Tansey, N. Larkin, “Chapter 2: Drained inland organic soils”, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Intergovernmental Panel on Climate Change, eds. Hiraishi T., Krug T., Tanabe K., Srivastava N., Baasansuren J., Fukuda M., Troxler T. G., Switzerland, 2014 |
40. |
G. Jia, E. Shevliakova, P. Artaxo, N. de Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, L. Verchot, “Land–climate interactions”, Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, eds. Shukla P. R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.-O., Roberts D. C., Zhai P., Slade R., Connors S., Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J., 2019 |
41. |
H. Joosten, D. Clarke, “Wise use of mires and peatlands”, Jyväskylä, Finland: International Mire Conservation Group & International Peat Society, 2002, 304 pp. |
42. |
H. Joosten, A. Sirin, J. Couwenberg, J. Laine, P. Smith, “The role of peatlands in climate regulation”, Peatland restoration and ecosystem services: science, policy and practice, eds. A. Bonn, T. Allott, M. Evans, H. Joosten, R. Stoneman, Cambridge University Press, Cambridge, 2016, 66–79 |
43. |
M. U. F. Kirschbaum, “The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage”, Soil Biology and Biochemistry, 27 (1995), 753–760 |
44. |
T. P. Kandel, L. Elsgaard, P. E. Lærke, “Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley”, GCB Bioenergy, 2013, no. 5, 548–561 |
45. |
S. Karki, T. P. Kandel, L. Elsgaard, R. Labouriau, P. E. Lærke, “Annual CO2 fluxes from a cultivated fen with perennial grasses during two initial years of rewetting”, Mires & Peat, 25 (2019), 1–22 |
46. |
J. Lloyd, J. A. Taylor, “On the temperature dependence of soil respiration”, Functional Ecology, 8 (1994), 315–323 |
47. |
A Quick Scan of Peatlands in Central and Eastern Europe, eds. Minayeva T., Sirin A., Bragg O., Wetlands International, Wageningen, The Netherlands, 2009, 132 pp. |
48. |
V. V. Novikov, A. L. Stepanov, A. I. Pozdnyakov, E. V. Lebedeva, “Seasonal dynamics of CO2, CH4, N2O, and NO emmissions from peat soils of the Yakhroma river floodplain”, Eurasian Soil Science, 37:7 (2004), 755–761 |
49. |
V. V. Novikov, A. V. Rusakov, “Release and absorption of greenhouse gases in ameliorated peat soils of the Rostov Lowland”, Eurasian Soil Science, 38:7 (2005), 755–761 |
50. |
A. Olchev, E. Volkova, T. Karataeva, E. Novenko, “Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia”, Environmental Research Letters, 8:3 (2013), 35–51 |
51. |
N. S. Panikov, S. A. Blagodatsky, J. V. Blagodatskaya, M. V. Glagolev, “Determination of microbial mineralization activity in soil by modified Wright and Hobbie method”, Biology and Fertility of Soils, 14:4 (1992), 280–287 |
52. |
Assessment on Peatlands, Biodiversity and Climate Change, eds. Parish F., Sirin A., Charman D., Joosten H., Minayeva T., Silvius M., Stringer L., Global Environment Centre and Wetlands International, Wageningen, 2008 |
53. |
F. Renou-Wilson, C. Müller, G. Moser, D. Wilson, “To graze or not to graze? Four years greenhouse gas balances and vegetation composition from a drained and a rewetted organic soil under grassland”, Agriculture, Ecosystems & Environment, 222 (2016), 156–170 |
54. |
M. Strack, Peatlands and Climate Change, International Peat Society and Saarijärven Offset Oy, 2008 |
55. |
A. A. Sirin, A. A. Maslov, N. A. Valyaeva, O. P. Tsyganova, T. V. Glukhova, “Mapping of peatlands in the Moscow oblast based on high-resolution remote sensing data”, Contemporary Problems of Ecology, 7:7 (2014), 808–814 |
56. |
A. Sirin, T. Minayeva, T. Yurkovskaya, O. Kuznetsov, V. Smagin, Yu. Fedotov, “Russian Federation (European Part)”, Mires and peatlands of Europe: Status, distribution and conservation, eds. Joosten H., Tanneberger F., Moen A., Schweizerbart Science Publishers, Stuttgart, 2017, 589–616 |
57. |
L. A. Schipper, M. McLeod, “Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand”, Soil Use and Management, 18:2 (2002), 91–93 |
58. |
F. Tanneberger, C. Tegetmeyer, S. Busse, A. Barthelmes, S. Shumka, A. M. Marine, K. Jenderedjian, G. M. Steiner, F. Essl, J. Etzold, C. Mendes, A. Kozulin, P. Frankard, D. Milanovic, A. Ganeva, I. Apostolova, A. Alegro, P. Delipetrou, J. Navratilová, M. Risager, A. Leivits, A. M. Fosaa, S. Tuominen, F. Muller, T. Bakuradze, M. Sommer, K. Christanis, E. Szurdoki, H. Oskarsson, S. H. Brink, J. Connolly, L. Bragazza, G. Martinelli, O. Aleksans, A. Priede, D. Sungaila, L. Melovski, T. Belous, D. Saveljic, F. de Vries, A. Moen, W. Dembek, J. Mateus, J. Hanganu, A. Sirin, A. Markina, M. Napreenko, P. Lazarevič, V. S. Stanová, P. Skoberne, P. H. Perez, X. Pontevedra-Pombal, J. Lonnstad, M. Kuchler, C. Wust-Galley, S. Kirca, O. Mykytiuk, R. Lindsay, H. Joosten, “The peatland map of Europe”, Mires and Peat, 19 (2017), 22, 1–17 |
59. |
A. Yurova, A. Wolf, J. Sagerfors, M. Nilsson, “Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water table position”, Journal of Geophysical Research: Biogeosciences, 112 (2007), G02025 |
60. |
S. E. Vompersky, O. P. Tsyganova, N. A. Valyaeva, T. V. Glukhova, A. I. Dubinin, A. I. Glukhov, L. G. Markelova, “Bog organic soils and bogs of Russia and carbon pool of their peats”, Eurasian Soil science, 1996, no. 2, 91–105 |
61. |
S. E. Vompersky, A. A. Sirin, A. A. Salnikov, O. P. Tsyganova, N. A. Valyaeva, “Estimation of Forest Cover Extent over Peatland and Paludified Shallow Peatlands in Russia”, Contemporary Problems of Ecology, 4:7 (2011), 734–741 |