|
|
|
ЛИТЕРАТУРА
|
|
|
1. |
Berkhin P., “A survey of clustering data mining techniques”, Grouping multidimensional data: Recent advances in clustering, Springer, Heidelberg, 2006, 25–71 |
2. |
Jain A. K., Dubes R. C., Algorithms for clustering data, Prentice Hall, Englewood Cliffs, NJ, 1988 |
3. |
Ghoreyshi S., Hosseinkhani J., “Developing a clustering model based on \text{$K$-means} algorithm in order to creating different policies for policyholders”, Int. J. Adv. Comput. Sci. Inf. Tech., 4:2 (2015), 46–53 |
4. |
Fisher W. D., “On grouping for maximum homogeneity”, J. Am. Stat. Assoc., 53:284 (1958), 789–798 |
5. |
MacQueen J., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Mathematics, Statistics and Probability (Berkeley, USA, June 21 — July 18, 1965; Dec. 27, 1965 — Jan. 7, 1966), v. 1, Univ. California Press, Berkeley, 1967, 281–297 |
6. |
Kaufman L., Rousseeuw P. J., “Clustering by means of medoids”, Statistical data analysis based on the $L_1$-norm, North-Holland, Amsterdam, 1987, 405–416 |
7. |
Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., 75:2 (2009), 245–248 |
8. |
Inaba M., Katoh N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based $k$-clustering”, Proc. 10th Annu. Symp. Computational Geometry (Stony Brook, NY, USA, June 6–8, 1994), ACM Press, New York, 1994, 332–339 |
9. |
Kumar A., Sabharwal Y., Sen S., “A simple linear time $(1+\varepsilon)$-approximation algorithm for geometric $k$-means clustering in any dimensions”, Proc. 45th Annu. IEEE Symp. Foundations of Computer Science (Rome, Italy, Oct. 17–19, 2004), IEEE Comp. Soc., Los Alamitos, CA, 2004, 454–462 |
10. |
Бабурин А. Е., Гимади Э. Х., Глебов Н. И., Пяткин А. В., “Задача отыскания подмножества векторов с максимальным суммарным весом”, Дискрет. анализ и исслед. операций. Сер. 2, 14:1 (2007), 32–42 ; A. E. Baburin, É. Kh. Gimadi, N. I. Glebov, and A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 |
11. |
Гимади Э. Х., Кельманов А. В., Кельманова М. А., Хамидуллин С. А., “Апостериорное обнаружение в числовой последовательности квазипериодического фрагмента при заданном числе повторов”, Сиб. журн. индустр. математики, 9:1 (2006), 55–74 [É. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, and S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006), 55–74] |
12. |
Кельманов А. В., Пяткин А. В., “О сложности одного из вариантов задачи выбора подмножества «похожих» векторов”, Докл. Акад. наук, 421:5 (2008), 590–592 ; A. V. Kel'manov and A. V. Pyatkin, “On the complexity of a search for a subset of «similar» vectors”, Dokl. Math., 78:1 (2008), 574–575 |
13. |
Кельманов А. В., Пяткин А. В., “Об одном варианте задачи выбора подмножества векторов”, Дискрет. анализ и исслед. операций, 15:5 (2008), 20–34 ; A. V. Kel'manov and A. V. Pyatkin, “On a version of the problem of choosing a vector subset”, J. Appl. Ind. Math., 3:4 (2009), 447–455 |
14. |
Долгушев А. В., Кельманов А. В., “Приближённый алгоритм решения одной задачи кластерного анализа”, Дискрет. анализ и исслед. операций, 18:2 (2011), 29–40 ; A. V. Dolgushev and A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 |
15. |
Кельманов А. В., Хандеев В. И., “Полиномиальный алгоритм с оценкой точности 2 для решения одной задачи кластерного анализа”, Дискрет. анализ и исслед. операций, 20:4 (2013), 36–45 ; A. V. Kel'manov and V. I. Khandeev, “A $2$-approximation polynomial algorithm for a clustering problem”, J. Appl. Ind. Math., 7:4 (2013), 515–521 |
16. |
Долгушев А. В., Кельманов А. В., Шенмайер В. В., “Полиномиальная аппроксимационная схема для одной задачи разбиения конечного множества на два кластера”, Тр. Ин-та математики и механики, 21:3 (2015), 100–109 ; A. V. Dolgushev, A. V. Kel'manov, and V. V. Shenmaier, “A polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Proc. Steklov Inst. Math., 295, Suppl. 1 (2016), 47–56 |
17. |
Кельманов А. В., Пяткин А. В., Хандеев В. И., “NP-трудность квадратичной евклидовой задачи 2-кластеризации 1-mean и 1-median с ограничениями на размеры кластеров”, Докл. Акад. наук, 489:4 (2019), 339–343 ; A. V. Kel'manov, A. V. Pyatkin, and V. I. Khandeev, “NP-hardness of quadratic Euclidean $1$-mean and $1$-median $2$-clustering problem with constraints on the cluster sizes”, Dokl. Math., 100:3 (2019), 545–548 |
18. |
Pyatkin A. V., “1-Mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation”, Yugoslav J. Oper. Res., 33:1 (2023), 59–69 |
19. |
Шенмайер В. В., “Аппроксимационная схема для одной задачи поиска подмножества векторов”, Дискрет. анализ и исслед. операций, 19:2 (2012), 93–101 ; V. V. Shenmaier, “An approximation scheme for a problem of search for a vector subset”, J. Appl. Ind. Math., 6:3 (2012), 381–386 |
20. |
Галашов А. Е., Кельманов А. В., “2-Приближённый алгоритм для одной задачи поиска семейства непересекающихся подмножеств векторов”, Автоматика и телемеханика, 2014, № 4, 5–19 ; A. E. Galashov and A. V. Kel'manov, “A $2$-approximate algorithm to solve one problem of a family of disjoint vector subsets”, Autom. Remote Control, 75:4 (2014), 595–606 |
21. |
Edmonds J., Karp R. M., “Theoretical improvements in algorithmic efficiency for network flow problems”, J. ACM, 19:2 (1972), 248–264 |
22. |
Gabow H. N., Tarjan R. E., “Faster scaling algorithms for network problems”, SIAM J. Comput., 18:5 (1989), 1013–1036 |
23. |
Wirth H., Algorithms + data structures = programs, Prentice Hall, Englewood Cliffs, NJ, 1976 |