RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika

Diskr. Mat., 2009, Volume 21, Issue 1, Pages 117–138 (Mi dm1042)

Critical branching random walks on low-dimensional lattices
E. B. Yarovaya

References

1. Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971  mathscinet
2. Yarovaya E. B., “Primenenie spektralnykh metodov v izuchenii vetvyaschikhsya protsessov s diffuziei v nekompaktnom fazovom prostranstve”, Teor. matem. fiz., 88:1 (1991), 25–30  mathnet  mathscinet  zmath
3. Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Doklady RAN, 363:4 (1998), 439–442  mathnet  mathscinet  zmath
4. Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980  mathscinet  zmath  adsnasa
5. Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100  crossref  mathscinet  zmath
6. Yarovaya E. B., “About limit theorems for branching symmetric random walk on $\mathbf Z^d$”, Kolmogorov and Contemporary Mathematics, MGU, Moskva, 2003, 592–593
7. Yarovaya E. B., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbf Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 60:1 (2005), 175–176  mathnet  mathscinet  zmath  elib
8. Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh-mate MGU, Moskva, 2007
9. Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queuing systems with random number of independent servers”, Theory Probab. Math. Stat., 69 (2004), 1–15  crossref  mathscinet
10. Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatnostei i ee primeneniya, 49:3 (2004), 461–484  mathnet  mathscinet  zmath
11. Vatutin V. A., Xiong J., “Limit theorems for a particle system of single point catalytic branching random walks”, Acta Mathematica Sinica, 23:6 (2007), 997–1012  crossref  mathscinet  zmath
12. Fleischmann K., Le Gall J., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Relat. Fields, 102 (1995), 63–82  crossref  mathscinet  zmath
13. Greven A., Klenke A., Wakolbinger A., “The long time behavior of branching random walk in a catalytic medium”, Electron. J. Probab., 4:12 (1999), 1–80  mathscinet
14. Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 2, Nauka, Moskva, 1973  mathscinet  zmath
15. Krasnoselskii M. A., Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, Moskva, 1966  mathscinet
16. Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, Moskva, 1970  mathscinet
17. Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, Moskva, 1984  zmath
18. Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025