RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika

Diskr. Mat., 2018, Volume 30, Issue 4, Pages 3–11 (Mi dm1529)

The complexity of checking the polynomial completeness of finite quasigroups
A. V. Galatenko, A. E. Pankratiev

References

1. A. V. Galatenko, A. E. Pankratev, S. B. Rodin, “O polinomialno polnykh kvazigruppakh prostogo poryadka”, Algebra i logika, prinyato k pechati  mathscinet
2. M. M. Glukhov, “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32  mathnet  elib
3. V. L. Yugai, “Ob odnom kriterii polinomialnoi polnoty kvazigrupp”, Intellektualnye sistemy. Teoriya i prilozheniya, 21:3 (2017), 131–135  mathnet  elib
4. V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups and Related Systems, 25 (2017), 1–19  mathscinet  zmath
5. V. A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S. K. Pal, “On Latin squares of polynomially complete quasigroups and quasigroups generated by shifts”, Quasigroups and Related Systems, 21 (2013), 117–130  mathscinet  zmath
6. J. Hagemann, C. Herrmann, “Arithmetical locally equational classes and representation of partial functions”, Universal Algebra, Esztergom (Hungary), 29 (1982), 345–360  mathscinet  zmath
7. G. Horváth, Gh. L. Nehaniv, Cs. Szabó, “An assertion concerning functionally complete algebras and NP-completeness”, Acta Sci. Math. (Szeged), 76 (2010), 35–48  mathscinet  zmath
8. D. Knuth, The Art of Computer Programming, v. 2, Seminumerical Algorithms, 3, Addison-Wesley, 2008  mathscinet
9. D. Lau, Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer, 2006  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025