RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika

Diskr. Mat., 2019, Volume 31, Issue 4, Pages 102–115 (Mi dm1575)

Large deviations of branching process in a random environment
A. V. Shklyaev

References

1. Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation $X = AX + B$, Springer, 2016  mathscinet  zmath
2. Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Math., 51:1 (1973), 207–248  crossref  mathscinet
3. Goldie C., “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1:1 (1991), 126–166  crossref  mathscinet  zmath
4. Engle R.F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United”, Econometrica, 50:4 (1982), 987–1000  crossref  mathscinet
5. Alsmeyer G., Iksanov A., “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electr. J. Probab., 14 (2009), 289–313  crossref  mathscinet  zmath
6. Buraczewski D., Damek E., Mikosch T., Zienkiewicz J., “Large deviations for solutions to stochastic recurrence equations under Kesten's condition”, Ann. Probab., 41 (2013), 2755–2790  crossref  mathscinet  zmath
7. Konstantinides D. G., Mikosch T., “Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations”, Ann. Probab., 33:5 (2005), 1992–2035  crossref  mathscinet  zmath
8. A.V. Shklyaev, “Large deviations for solution of random recurrence equation”, Markov Processes and Related Fields, 22:1 (2016), 139–164  mathscinet  zmath
9. Borovkov A.A., Teoriya veroyatnostei, URSS, 2009, 652 pp.


© Steklov Math. Inst. of RAS, 2025