RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika

Diskr. Mat., 2000, Volume 12, Issue 3, Pages 3–36 (Mi dm342)

Polynomial transformations of linear recurrent sequences over finite commutative rings
V. L. Kurakin

References

1. Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972  mathscinet
2. Burbaki N., Kommutativnaya algebra, Mir, Moskva, 1971  mathscinet
3. Van der Varden B. L., Algebra, Nauka, Moskva, 1979  mathscinet
4. Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Chast II, Moskva, 1991  zmath
5. Zarisskii O., Samyuel P., Kommutativnaya algebra, IL, Moskva, 1963
6. Kurakin V. L., “Predstavleniya nad koltsom $Z_{p^n}$ lineinoi rekurrentnoi posledovatelnosti maksimalnogo perioda nad polem $GF(p)$”, Diskretnaya matematika, 4:4 (1992), 96–116  mathnet  mathscinet  zmath
7. Kurakin V. L., “Polinomialnye preobrazovaniya lineinykh rekurrentnykh posledovatelnostei nad koltsom $Z_{p^2}$”, Diskretnaya matematika, 11:2 (1999), 40–65  mathnet  mathscinet  zmath
8. Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, Moskva, 1988  zmath
9. Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127  mathnet  mathscinet
10. Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1982  mathscinet  zmath
11. Bernasconi J., Günter C. G., “Analysis of a nonlinear feedforward logic for binary sequence generators”, Lect. Notes Comput. Sci., 219, 1986, 161–166  zmath
12. Brynielsson L., “On the linear complexity of combined shift register sequences”, Lect. Notes Comput. Sci., 219, 1986, 156–160  zmath
13. Chan A. H., Goresky M., Klapper A., “On the linear complexity of feedback registers”, IEEE Trans. Inform. Theory, 36, no. 3, 1990, 640–644  mathscinet  zmath
14. GolićS. D., “On the linear complexity of functions of periodic $GF(q)$ sequences”, IEEE Trans. Inform. Theory, 35, no. 1, 1989, 69–75  mathscinet
15. Herlestam T., “On the complexity of functions of linear shift register sequences”, Int. Symp. Inform. Theory, Les Arc, France, 1982
16. Herlestam T., “On functions of linear shift register sequences”, Lect. Notes Comput. Sci., 219, 1986, 119–129  mathscinet  zmath
17. Key E. L., “An analysis of the structure and complexity of nonlinear binary sequence generators”, IEEE Trans. Inform. Theory, 22, no.  6, 1976, 732–736  zmath
18. Klapper A., “The vulnerability of geometric sequences based on fields of odd characteristic”, J. Cryptology, 7 (1994), 33–51  crossref  mathscinet  zmath
19. Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76: 6 (1995), 2793–2915  crossref  mathscinet  zmath
20. Lu P., Song G., “Feasible calculation of the generator for combined LFSR sequences”, Lect. Notes Comput. Sci., 508, 1991, 86–95  mathscinet  zmath
21. Lu P., Song G., Zhou J., “Tenzor product with application to linear recurring sequences”, J. Math. Res. Exposition, 12:4 (1992), 551–558  mathscinet  zmath
22. Rueppel R. A., Staffelbach O. J., “Products of linear recurring sequences with maximum complexity”, IEEE Trans. Inform. Theory, 33, no. 1, 1987, 126–131
23. Selmer E. S., Linear Recurrence Relations Over Finite Fields, Univ. Bergen, Bergen, 1966
24. Vajda I., Nemetz T., “Substitution of characters in $q$-ary $m$-sequences”, Lect. Notes Comput. Sci., 508, 1991, 96–105  mathscinet  zmath
25. Zierler N., Mills W. H., “Products of linear recurring sequences”, J. Algebra, 27:1 (1973), 147–157  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025