RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika

Diskr. Mat., 2006, Volume 18, Issue 3, Pages 120–137 (Mi dm65)

On values of the affine rank of the support of spectrum of a plateaued function
Yu. V. Tarannikov

References

1. Kuznetsov Yu. V., “O nositelyakh platovidnykh funktsii”, Materialy VIII Mezhdunarodnogo seminara «Diskretnaya matematika i ee prilozheniya», MGU, Moskva, 2004, 424–426
2. Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptografii, MTsNMO, Moskva, 2004
3. Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matem. voprosy kibernetiki, 11 (2002), 91–148
4. Tarannikov Yu. V., “O platovidnykh ustoichivykh funktsiyakh”, Materialy VIII Mezhdunarodnogo seminara «Diskretnaya matematika i ee prilozheniya», MGU, Moskva, 2004, 431–435
5. Carlet C., Charpin P., “Cubic Boolean functions with highest resiliency”, Proc. 2004 IEEE Intern. Symposium on Inform. Theory, 2004, 497  mathscinet
6. Carlet C., Sarkar P., “Spectral domain analysis of correlation immune and resilient Boolean functions”, Finite Fields Appl., 8 (2002), 120–130  crossref  mathscinet  zmath
7. Kasami T., Tokura N., Azumi S., “On the weight enumeration of weights less than $2.5d$ of Reed–Muller codes”, Information and Control, 30:4 (1976), 380–395  crossref  mathscinet  zmath
8. Pei D., Qin W., “The correlation of a Boolean function with its variables”, Lecture Notes Computer Sci., 2000, 1–8  mathscinet
9. Zheng Y., Zhang X.-M., “Plateaued functions”, Lecture Notes Computer Sci., 1726, 1999, 284–300  zmath


© Steklov Math. Inst. of RAS, 2025