RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal

Dal'nevost. Mat. Zh., 2012, Volume 12, Number 1, Pages 89–97 (Mi dvmg231)

A homotopy-theoretic rigidity property of Bott manifolds
S. Theriault

References

1. Baues, The homotopy category of simply-connected $4$-manifolds, London Math. Soc. Lecture Notes Series, 297, Cambridge Univ. Press, Cambridge, 2003  mathscinet  zmath
2. S. Choi, Classification of Bott manifolds up to dimension eight, arXiv: 1112.2321
3. S. Choi, M. Masuda and D. Y. Suh, “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362 (2010), 1097–1112  crossref  mathscinet  zmath  elib
4. S. Choi, M. Masuda and D. Y. Suh, Rigidity problems in toric topology, a survey, arXiv: 1102.1359  mathscinet
5. M. Masuda, “Equivariant cohomology distinguishes toric manifolds”, Adv. Math., 218 (2008), 2005–2012  crossref  mathscinet  zmath
6. M. Masuda and T. Panov, “Semi-free circle actions, Bott towers, and quasitoric manifolds”, Sb. Math., 199 (2008), 1201–1223  mathnet  crossref  mathscinet  zmath  elib
7. H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, Princeton NJ, 1962  mathscinet  zmath
8. H. Toda, “On iterated suspensions I ”, J. Math. Kyoto Univ., 5 (1966), 87–142  mathscinet


© Steklov Math. Inst. of RAS, 2025