RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal

Eurasian Math. J., 2013, том 4, номер 3, страницы 20–31 (Mi emj130)

An inverse problem for the matrix quadratic pencil on a finite interval
N. P. Bondarenko

References

1. A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Inverse problem for an operator pencil with nonseparated boundary conditions”, Eurasian Math. J., 1:2 (2010), 5–16  mathnet  mathscinet  zmath
2. A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions”, Eurasian Math. J., 3:4 (2012), 10–22  mathnet  mathscinet  zmath
3. N. Bondarenko, “Spectral analysis for the matrix Sturm–Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327  crossref  mathscinet  zmath  elib
4. N. P. Bondarenko, “Necessary and sufficient conditions for the solvability of the inverse problem for the matrix Sturm–Liouville operator”, Funct. Anal. Appl., 46:1 (2012), 53–57  mathnet  crossref  mathscinet  zmath  isi  elib
5. S. A. Buterin, “On half inverse problem for differential pencils with the spectral parameter in boundary conditions”, Tamkang J. Math., 42:3 (2011), 355–364  crossref  mathscinet  zmath  elib
6. S. A. Buterin, V. A. Yurko, “Inverse spectral problem for pencils of differential operators on a finite interval”, Vestnik Bashkir. Univ., 2006, no. 4, 8–12 (in Russian)
7. S. A. Buterin, V. A. Yurko, “Inverse problems for second-order differential pencils with Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 20:5–6 (2012), 855–881  mathscinet  zmath  isi  elib
8. D. Chelkak, E. Korotyaev, “Weyl-Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. Func. Anal., 257 (2009), 1546–1588  crossref  mathscinet  zmath  isi  elib
9. G. Freiling, V. Yurko, Inverse Sturm–Liouville problems and their applications, Nova Science Publishers, Huntington, NY, 2001, 305 pp.  mathscinet  zmath
10. M. G. Gasymov, G. Sh. Gusejnov, “Determination of diffusion operator from spectral data”, Akad. Nauk Azerb. SSR. Dokl., 37 (1981), 19–23  mathscinet  zmath
11. R. Hryniv, N. Pronska, “Inverse spectral problems for energy-dependent Sturm–Liouville equations”, Inverse Problems, 28 (2012), 085008, 21 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
12. M. Yu. Ignatiev, V. A. Yurko, “Numerical methods for solving inverse Sturm–Liouville problems”, Results in Mathematics, 52:1–2 (2008), 63–74  crossref  mathscinet  zmath  isi
13. M. Jaulent, C. Jean, “The inverse $s$-wave scattering problem for a class of potentials depending on energy”, Comm. Math. Phys., 28 (1972), 177–220  crossref  mathscinet  adsnasa
14. M. V. Keldysh, “On eigenvalues and eigenfunctions of some classes of nonselfadjoint equations”, Dokl. Akad. Nauk. SSSR, 77 (1951), 11–14  zmath
15. M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of nonselfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44  mathnet  crossref  mathscinet  zmath  adsnasa
16. A. G. Kostyuchenko, A. A. Shkalikov, “Selfadjoint quadratic operator pencils and elliptic problems”, Funk. Anal. i Prilozhen, 17:2 (1983), 38–61  mathnet  mathscinet  zmath; English transl.: Funct. Anal. Appl., 17 (1983), 109–128  crossref  mathscinet  zmath  isi
17. V. A. Marchenko, Sturm–Liouville operators and their applications, Naukova Dumka, Kiev, 1977 (in Russian)  mathscinet; English transl.: Birkhauser, 1986  zmath
18. A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, American Mathematical Society, Providence, RI, 1988  mathscinet  zmath; Translated from the Russian edition: “Shtiints”, Kishinev, 1986  zmath
19. Ya. V. Mykytyuk, N. S. Trush, “Inverse spectral problems for Sturm-Liouville operators with matrix-valued potentials”, Inverse Problems, 26 (2010), 015009  crossref  mathscinet  zmath  adsnasa  isi  elib
20. N. Pronska, “Reconstruction of energy-dependent Sturm–Liouville equations from two spectra”, Integral Equations and Operator Theory, 76:3 (2013), 403–419  crossref  mathscinet  zmath  isi
21. A. A. Shkalikov, “Boundary value problems for ordinary differential equations with a parameter in the boundary conditions”, Trudy Sem. Petrovsk., 9, 1983, 190–229 (in Russian)  mathscinet  zmath
22. M. Yamamoto, “Inverse eigenvalue problem for a vibration of a string with viscous drag”, J. Math. Anal. Appl., 152 (1990), 20–34  crossref  mathscinet  zmath  isi
23. V. A. Yurko, “On boundary value problems with the parameter in the boundary conditions”, Izvestjya AN SSR. Ser. Matem., 19 (1984), 398–409  mathscinet  zmath
24. V. A. Yurko, “An inverse problem for systems of differential equations with nonlinear dependence on the spectral parameter”, Diff. Uravneniya, 33:3 (1997), 390–395 (in Russian)  mathnet  mathscinet  zmath; English transl.: Diff. Equ., 33:3 (1997), 388–394  mathscinet  zmath  isi
25. V. A. Yurko, “An inverse problem for pencils of differential operators”, Matem. Sbornik, 191:10 (2000), 137–160  mathnet  crossref  mathscinet  zmath
26. V. A. Yurko, Method of spectral mappings in the inverse problems theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002  mathscinet  zmath
27. V. A. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Problems, 22 (2006), 1139–1149  crossref  mathscinet  zmath  adsnasa  isi  elib


© МИАН, 2025