RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 2020, Volume 54, Issue 3, Pages 63–72 (Mi faa3628)

A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces
Minh-Phuong Tran, Thanh-Nhan Nguyen

References

1. D. R. Adams, Lecture Notes on $L^p$-Potential Theory, Dept. of Math., University of Umea, Umea, 1981
2. D. R. Adams, L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin–Heidelberg, 1996  mathscinet
3. R. A. Adams, J. J. F. Fourier, Sobolev spaces, Pure and Applied Mathematics, 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003  mathscinet
4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011  mathscinet  zmath
5. N. A. Dao, J. I. Díaz, Q.-H. Nguyen, “Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces”, Nonlinear Anal., 173 (2018), 146–153  crossref  mathscinet  zmath
6. D. S. McCormick, J. C. Robinson, J. L. Rodrigo, “Generalised Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO”, Milan J. Math., 81:2 (2013), 265–289  crossref  mathscinet  zmath
7. L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162  mathscinet  zmath
8. G. Patalucci, A. Pisante, “Improved Sobolev embeddings, profile decomposition, and concentrationcompactness for fractional Sobolev spaces”, Calc. Var. Partial Differential Equations, 50:3–4 (2014), 799–829  mathscinet
9. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993  mathscinet  zmath
10. E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton, NJ, 2011  mathscinet  zmath
11. J. Van Schaftingen, “Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg interpolation inequalities”, Port. Math., 71:3 (2014), 159–175  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025