|
|
|
Литература
|
|
|
1. |
D. R. Adams, Lecture Notes on $L^p$-Potential Theory, Dept. of Math., University of Umea, Umea, 1981 |
2. |
D. R. Adams, L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin–Heidelberg, 1996 |
3. |
R. A. Adams, J. J. F. Fourier, Sobolev spaces, Pure and Applied Mathematics, 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003 |
4. |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011 |
5. |
N. A. Dao, J. I. Díaz, Q.-H. Nguyen, “Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces”, Nonlinear Anal., 173 (2018), 146–153 |
6. |
D. S. McCormick, J. C. Robinson, J. L. Rodrigo, “Generalised Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO”, Milan J. Math., 81:2 (2013), 265–289 |
7. |
L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162 |
8. |
G. Patalucci, A. Pisante, “Improved Sobolev embeddings, profile decomposition, and concentrationcompactness for fractional Sobolev spaces”, Calc. Var. Partial Differential Equations, 50:3–4 (2014), 799–829 |
9. |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 |
10. |
E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton, NJ, 2011 |
11. |
J. Van Schaftingen, “Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg interpolation inequalities”, Port. Math., 71:3 (2014), 159–175 |