RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 2020, Volume 54, Issue 4, Pages 37–55 (Mi faa3774)

The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels
N. Demni, T. Hamdi, A. Souaissi

References

1. G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999  mathscinet  zmath
2. C. Balderrama, P. Graczyk, W. O. Urbina, “A formula for polynomials with Hermitian matrix argument”, Bull. Sci. Math., 129:6 (2005), 486–500  crossref  mathscinet  zmath
3. C. Carré, M. Deneufchatel, J.-G. Luque, P. Vivo, “Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula”, J. Math. Phys., 51:12 (2010), 123516  crossref  mathscinet  zmath  adsnasa
4. B. Collins, “Product of random projections, Jacobi ensembles and universality problems arising from free probability”, Probab. Theory Related Fields, 133:3 (2005), 315–344  crossref  mathscinet  zmath
5. B. Collins, A. Dahlqvist, T. Kemp, “The spectral edge of unitary Brownian motion”, Probab. Theory Related Fields, 170:1–2 (2018), 49–93  crossref  mathscinet  zmath
6. R. Dar, M. Feder, M. Shtaif, “The Jacobi MIMO channel”, Information Theory, IEEE Transaction, 59:4 (2013), 2426–2441  crossref  mathscinet  zmath
7. P. Deift, D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York, NY; Amer. Math. Soc., Providence, RI, 2009  crossref  mathscinet  zmath
8. L. Deleaval, N. Demni, “Moments of the Hermitian matrix Jacobi process”, J. Theoret. Probab., 31:3 (2018), 1759–1778  crossref  mathscinet  zmath
9. N. Demni, “$\beta$-Jacobi processes”, Adv. Pure Appl. Math, 1:3 (2010), 325–344  crossref  mathscinet  zmath  elib
10. N. Demni, T. Hamdi, “Inverse of the flow and moments of the free Jacobi process associated with one projection”, Random Matrices: Theory Appl., 7:2 (2018)  crossref  mathscinet  zmath  scopus
11. Y. Doumerc, Matrices aléatoires, processus stochastiques et groupes de réflexions, Ph. D. Thesis, Paul Sabatier Univ, 2005; https://perso.math.univ-toulouse.fr/ledoux/files/2013/11/PhD-thesis.pdf  zmath
12. J. Koekoek, R. Koekoek, “The Jacobi inversion formula”, Complex Variables Theory Appl., 39:1 (1999), 1–18  crossref  mathscinet  zmath
13. C. Krattenthaler, “Advanced determinant calculus. The Andrews Festschrift (Maratea, 1998)”, Sém. Lothar. Combin, 42 (1999), Art. B42q  mathscinet
14. M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris, 312, Série I (1991), 425–428  mathscinet  zmath
15. M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991  mathscinet  zmath
16. I. G. MacDonald, Symmetric Functions and Hall Polynomials, Math. Monographs, Oxford, 1995  mathscinet  zmath
17. A. Nafkha, N. Demni, Closed-form expressions of ergodic capacity and MMSE achievable sum rate for MIMO Jacobi and Rayleigh fading channels, arXiv: 1511.06074
18. G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Internat. Math. Res. Notices, 16 (2012), 3615–3679  crossref  mathscinet  zmath  elib  scopus
19. G. I. Olshanskii, A. A. Osinenko, “Mnogomernye mnogochleny Yakobi i integral Selberga”, Funkts. analiz i ego pril., 46:4 (2012), 31–50  mathnet  crossref  mathscinet  zmath
20. I. E. Telatar, “Capacity of multi-antenna gaussian channels”, European Transactions on Telecommunications, 10 (1999), 585–595  crossref  mathscinet  scopus


© Steklov Math. Inst. of RAS, 2025