RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 2020, Volume 54, Issue 4, Pages 74–84 (Mi faa3809)

Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
E. V. Troitskii, D. V. Fufaev

References

1. N. Burbaki, Obschaya topologiya: Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975  mathscinet
2. M. Frank, D. R. Larson, “A module frame concept for Hilbert {$C^\ast$}-modules”, The functional and harmonic analysis of wavelets and frames, San Antonio, TX, 1999, Contemp. Math., no. 247, Amer. Math. Soc., Providence, RI, 1999, 207–233  crossref  mathscinet  zmath
3. M. Frank, D. R. Larson, “Frames in Hilbert {$C^\ast$}-modules and {$C^\ast$}-algebras”, J. Operator Theory, 48:2 (2002), 273–314  mathscinet  zmath
4. G. G. Kasparov, “Hilbert C*-modules: theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150  mathscinet  zmath
5. D. J. Kečkić, Z. Lazović, “Compact and “compact” operators on standard {H}ilbert modules over $W^*$-algebras”, Ann. Funct. Anal., 9:2 (2018), 258–270  crossref  mathscinet  zmath  scopus; arXiv: 1610.06956
6. E. C. Lance, Hilbert {C*}-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995  mathscinet  zmath
7. Z. Lazović, “Compact and “compact” operators on standard {H}ilbert modules over ${C}^*$-algebras”, Adv. Oper. Theory, 3:4 (2018), 829–836  crossref  mathscinet  zmath  scopus
8. V. M. Manuilov, E. V. Troitsky, “Hilbert ${C}^*$- and ${W}^*$-modules and their morphisms”, J. Math. Sci., 98:2 (2000), 137–201  crossref  mathscinet  zmath  scopus
9. V. M. Manuilov, E. V. Troitskii, ${C}^*$-gilbertovy moduli, Faktoril Press, M., 2001
10. E. V. Troitsky, “Geometric essence of “compact” operators on {H}ilbert {C}*-modules”, J. Math. Anal. Appl., 485:2 (2020), 123842  crossref  mathscinet  zmath  scopus


© Steklov Math. Inst. of RAS, 2025